মূল্যায়ন
\frac{13}{20}=0.65
কাৰক
\frac{13}{2 ^ {2} \cdot 5} = 0.65
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{5+2}{10}-\frac{5}{10}\times \frac{1}{10}
যিহেতু \frac{5}{10} আৰু \frac{2}{10}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{7}{10}-\frac{5}{10}\times \frac{1}{10}
7 লাভ কৰিবৰ বাবে 5 আৰু 2 যোগ কৰক৷
\frac{7}{10}-\frac{1}{2}\times \frac{1}{10}
5 এক্সট্ৰেক্ট আৰু বাতিল কৰি \frac{5}{10} ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
\frac{7}{10}-\frac{1\times 1}{2\times 10}
নিউমাৰেটৰ সময়ক নিউমাৰেটৰৰে আৰু ডেনোমিনেটৰ সময়ক ডেনোমিনেটেৰে পূৰণ কৰি \frac{1}{2} বাৰ \frac{1}{10} পূৰণ কৰক৷
\frac{7}{10}-\frac{1}{20}
\frac{1\times 1}{2\times 10} ভগ্নাংশত গুণনিয়ক কৰক৷
\frac{14}{20}-\frac{1}{20}
10 আৰু 20ৰ সাধাৰণ গুণফল হৈছে 20৷ হৰ 20ৰ সৈতে ভগ্নাংশ কৰিবলৈ \frac{7}{10} আৰু \frac{1}{20} ৰূপান্তৰ কৰক৷
\frac{14-1}{20}
যিহেতু \frac{14}{20} আৰু \frac{1}{20}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{13}{20}
13 লাভ কৰিবলৈ 14-ৰ পৰা 1 বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}