x-ৰ বাবে সমাধান কৰক
x=-\frac{1}{2}=-0.5
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x-\frac{1}{2}\right)^{3} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ব্যৱহাৰ কৰক৷
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}x\right)^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x-\frac{1}{2}\right)\left(\frac{1}{3}x+\frac{1}{2}\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ \frac{1}{2}৷
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\left(\frac{1}{3}\right)^{2}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\left(\frac{1}{3}x\right)^{2} বিস্তাৰ কৰক৷
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\left(\frac{1}{9}x^{2}-\frac{1}{4}\right)-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
2ৰ পাৱাৰ \frac{1}{3}ক গণনা কৰক আৰু \frac{1}{9} লাভ কৰক৷
\frac{1}{27}x^{3}-\frac{1}{6}x^{2}+\frac{1}{4}x-\frac{1}{8}-\frac{1}{9}x^{2}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{9}x^{2}-\frac{1}{4}ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x-\frac{1}{8}+\frac{1}{4}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
-\frac{5}{18}x^{2} লাভ কৰিবলৈ -\frac{1}{6}x^{2} আৰু -\frac{1}{9}x^{2} একত্ৰ কৰক৷
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{9}x^{2}\left(\frac{1}{3}x-\frac{5}{2}\right)=0
\frac{1}{8} লাভ কৰিবৰ বাবে -\frac{1}{8} আৰু \frac{1}{4} যোগ কৰক৷
\frac{1}{27}x^{3}-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}-\frac{1}{27}x^{3}+\frac{5}{18}x^{2}=0
-\frac{1}{9}x^{2}ক \frac{1}{3}x-\frac{5}{2}ৰে পূৰণ কৰিবলৈ বিতৰক উপাদান ব্যৱহাৰ কৰক৷
-\frac{5}{18}x^{2}+\frac{1}{4}x+\frac{1}{8}+\frac{5}{18}x^{2}=0
0 লাভ কৰিবলৈ \frac{1}{27}x^{3} আৰু -\frac{1}{27}x^{3} একত্ৰ কৰক৷
\frac{1}{4}x+\frac{1}{8}=0
0 লাভ কৰিবলৈ -\frac{5}{18}x^{2} আৰু \frac{5}{18}x^{2} একত্ৰ কৰক৷
\frac{1}{4}x=-\frac{1}{8}
দুয়োটা দিশৰ পৰা \frac{1}{8} বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
x=-\frac{1}{8}\times 4
4-ৰ দ্বাৰা দুয়োটা ফাল পূৰণ কৰক, \frac{1}{4}ৰ পৰস্পৰে৷
x=-\frac{1}{2}
-\frac{1}{2} লাভ কৰিবৰ বাবে -\frac{1}{8} আৰু 4 পুৰণ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}