মূল্যায়ন
x^{2}
বিস্তাৰ
x^{2}
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x\right)^{2} বিস্তাৰ কৰক৷
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
2ৰ পাৱাৰ \frac{1}{2}ক গণনা কৰক আৰু \frac{1}{4} লাভ কৰক৷
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\frac{1}{2}x^{2} লাভ কৰিবলৈ \frac{1}{4}x^{2} আৰু \frac{1}{4}x^{2} একত্ৰ কৰক৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
0 লাভ কৰিবলৈ 1-ৰ পৰা 1 বিয়োগ কৰক৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
\left(-\frac{1}{2}x\right)^{2} বিস্তাৰ কৰক৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
2ৰ পাৱাৰ -\frac{1}{2}ক গণনা কৰক আৰু \frac{1}{4} লাভ কৰক৷
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
\frac{3}{4}x^{2} লাভ কৰিবলৈ \frac{1}{2}x^{2} আৰু \frac{1}{4}x^{2} একত্ৰ কৰক৷
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
\left(\frac{1}{2}x+1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-x+x+1-1
x^{2} লাভ কৰিবলৈ \frac{3}{4}x^{2} আৰু \frac{1}{4}x^{2} একত্ৰ কৰক৷
x^{2}+1-1
0 লাভ কৰিবলৈ -x আৰু x একত্ৰ কৰক৷
x^{2}
0 লাভ কৰিবলৈ 1-ৰ পৰা 1 বিয়োগ কৰক৷
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right)+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}x\right)^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x-1\right)\left(\frac{1}{2}x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
\frac{1}{4}x^{2}-x+1+\left(\frac{1}{2}\right)^{2}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\left(\frac{1}{2}x\right)^{2} বিস্তাৰ কৰক৷
\frac{1}{4}x^{2}-x+1+\frac{1}{4}x^{2}-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
2ৰ পাৱাৰ \frac{1}{2}ক গণনা কৰক আৰু \frac{1}{4} লাভ কৰক৷
\frac{1}{2}x^{2}-x+1-1+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
\frac{1}{2}x^{2} লাভ কৰিবলৈ \frac{1}{4}x^{2} আৰু \frac{1}{4}x^{2} একত্ৰ কৰক৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right)
0 লাভ কৰিবলৈ 1-ৰ পৰা 1 বিয়োগ কৰক৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}x\right)^{2}-1
\left(-\frac{1}{2}x-1\right)\left(-\frac{1}{2}x+1\right) বিবেচনা কৰক। \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} নিয়ম ব্যৱহাৰ কৰি গুণনিয়ক বিভিন্ন বৰ্গলৈ ৰূপান্তৰিত কৰিব পাৰি৷ বৰ্গ 1৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\left(-\frac{1}{2}\right)^{2}x^{2}-1
\left(-\frac{1}{2}x\right)^{2} বিস্তাৰ কৰক৷
\frac{1}{2}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}+\frac{1}{4}x^{2}-1
2ৰ পাৱাৰ -\frac{1}{2}ক গণনা কৰক আৰু \frac{1}{4} লাভ কৰক৷
\frac{3}{4}x^{2}-x+\left(\frac{1}{2}x+1\right)^{2}-1
\frac{3}{4}x^{2} লাভ কৰিবলৈ \frac{1}{2}x^{2} আৰু \frac{1}{4}x^{2} একত্ৰ কৰক৷
\frac{3}{4}x^{2}-x+\frac{1}{4}x^{2}+x+1-1
\left(\frac{1}{2}x+1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-x+x+1-1
x^{2} লাভ কৰিবলৈ \frac{3}{4}x^{2} আৰু \frac{1}{4}x^{2} একত্ৰ কৰক৷
x^{2}+1-1
0 লাভ কৰিবলৈ -x আৰু x একত্ৰ কৰক৷
x^{2}
0 লাভ কৰিবলৈ 1-ৰ পৰা 1 বিয়োগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}