মুখ্য সমললৈ এৰি যাওক
y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=1 ab=-30
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ y^{2}+\left(a+b\right)y+ab=\left(y+a\right)\left(y+b\right) ব্যৱহাৰ কৰি y^{2}+y-30ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,30 -2,15 -3,10 -5,6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -30 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+30=29 -2+15=13 -3+10=7 -5+6=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(y-5\right)\left(y+6\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(y+a\right)\left(y+b\right) পুনৰ লিখক।
y=5 y=-6
সমীকৰণ উলিয়াবলৈ, y-5=0 আৰু y+6=0 সমাধান কৰক।
a+b=1 ab=1\left(-30\right)=-30
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে y^{2}+ay+by-30 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,30 -2,15 -3,10 -5,6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -30 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+30=29 -2+15=13 -3+10=7 -5+6=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-5 b=6
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 1।
\left(y^{2}-5y\right)+\left(6y-30\right)
y^{2}+y-30ক \left(y^{2}-5y\right)+\left(6y-30\right) হিচাপে পুনৰ লিখক।
y\left(y-5\right)+6\left(y-5\right)
প্ৰথম গোটত y আৰু দ্বিতীয় গোটত 6ৰ গুণনীয়ক উলিয়াওক।
\left(y-5\right)\left(y+6\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম y-5ৰ গুণনীয়ক উলিয়াওক।
y=5 y=-6
সমীকৰণ উলিয়াবলৈ, y-5=0 আৰু y+6=0 সমাধান কৰক।
y^{2}+y-30=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
y=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 1, c-ৰ বাবে -30 চাবষ্টিটিউট৷
y=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
বৰ্গ 1৷
y=\frac{-1±\sqrt{1+120}}{2}
-4 বাৰ -30 পুৰণ কৰক৷
y=\frac{-1±\sqrt{121}}{2}
120 লৈ 1 যোগ কৰক৷
y=\frac{-1±11}{2}
121-ৰ বৰ্গমূল লওক৷
y=\frac{10}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ y=\frac{-1±11}{2} সমাধান কৰক৷ 11 লৈ -1 যোগ কৰক৷
y=5
2-ৰ দ্বাৰা 10 হৰণ কৰক৷
y=-\frac{12}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ y=\frac{-1±11}{2} সমাধান কৰক৷ -1-ৰ পৰা 11 বিয়োগ কৰক৷
y=-6
2-ৰ দ্বাৰা -12 হৰণ কৰক৷
y=5 y=-6
সমীকৰণটো এতিয়া সমাধান হৈছে৷
y^{2}+y-30=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
y^{2}+y-30-\left(-30\right)=-\left(-30\right)
সমীকৰণৰ দুয়োটা দিশতে 30 যোগ কৰক৷
y^{2}+y=-\left(-30\right)
ইয়াৰ নিজৰ পৰা -30 বিয়োগ কৰিলে 0 থাকে৷
y^{2}+y=30
0-ৰ পৰা -30 বিয়োগ কৰক৷
y^{2}+y+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
1 হৰণ কৰক, \frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
y^{2}+y+\frac{1}{4}=30+\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{2} বৰ্গ কৰক৷
y^{2}+y+\frac{1}{4}=\frac{121}{4}
\frac{1}{4} লৈ 30 যোগ কৰক৷
\left(y+\frac{1}{2}\right)^{2}=\frac{121}{4}
উৎপাদক y^{2}+y+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(y+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
y+\frac{1}{2}=\frac{11}{2} y+\frac{1}{2}=-\frac{11}{2}
সৰলীকৰণ৷
y=5 y=-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{2} বিয়োগ কৰক৷