x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
x\in \frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{\sqrt{5}+3}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}e^{\frac{2\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}
x-ৰ বাবে সমাধান কৰক
x=\frac{2^{\frac{2}{3}}\sqrt[3]{3-\sqrt{5}}}{2}\approx 0.72556263
x = \frac{2 ^ {\frac{2}{3}} \sqrt[3]{\sqrt{5} + 3}}{2} \approx 1.378240772
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{3}x^{3}+1=3x^{3}
চলক x, 0ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ x^{3}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
x^{6}+1=3x^{3}
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 6 পাবলৈ 3 আৰু 3 যোগ কৰক।
x^{6}+1-3x^{3}=0
দুয়োটা দিশৰ পৰা 3x^{3} বিয়োগ কৰক৷
t^{2}-3t+1=0
x^{3} বাবে t বিকল্প।
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে -3, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 1।
t=\frac{3±\sqrt{5}}{2}
গণনা কৰক৷
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া t=\frac{3±\sqrt{5}}{2} সমীকৰণটো সমাধান কৰক।
x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
যিহেতু x=t^{3}, সেয়েহে প্ৰতিটো tৰ সমীকৰণৰ দ্বাৰা সমাধান উলিওৱা হৈছে।
x=\sqrt[3]{\frac{3-\sqrt{5}}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{3-\sqrt{5}}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0 x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{\sqrt{5}+3}{2}}ie^{\frac{\pi i}{6}}\text{, }x\neq 0 x=-\sqrt[3]{\frac{\sqrt{5}+3}{2}}e^{\frac{\pi i}{3}}\text{, }x\neq 0
চলক x, 0ৰ সৈতে সমান হ’ব নোৱাৰে৷
x^{3}x^{3}+1=3x^{3}
চলক x, 0ৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ x^{3}-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
x^{6}+1=3x^{3}
একে আধাৰৰ পাৱাৰ পূৰণ কৰিবলৈ, সেইবোৰৰ ঘাতসমূহ যোগ কৰক। 6 পাবলৈ 3 আৰু 3 যোগ কৰক।
x^{6}+1-3x^{3}=0
দুয়োটা দিশৰ পৰা 3x^{3} বিয়োগ কৰক৷
t^{2}-3t+1=0
x^{3} বাবে t বিকল্প।
t=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 প্ৰপত্ৰৰ সকলো সমীকৰণ দ্বিঘাত সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। aৰ বাবে 1ৰ বিকল্প দিয়ক, bৰ বাবে -3, আৰু দ্বিঘাত সূত্ৰত cৰ বাবে 1।
t=\frac{3±\sqrt{5}}{2}
গণনা কৰক৷
t=\frac{\sqrt{5}+3}{2} t=\frac{3-\sqrt{5}}{2}
যেতিয়া ± যোগ হয় আৰু যেতিয়া ± বিয়োগ হয় তেতিয়া t=\frac{3±\sqrt{5}}{2} সমীকৰণটো সমাধান কৰক।
x=\sqrt[3]{\frac{\sqrt{5}+3}{2}} x=\sqrt[3]{\frac{3-\sqrt{5}}{2}}
x=t^{3}ৰ পৰা, প্ৰত্যেক tৰ বাবে x=\sqrt[3]{t} মূল্যায়ন কৰি সমাধানসমূহ আহৰণ কৰা হয়।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}