মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-5x-28+4=0
উভয় কাষে 4 যোগ কৰক।
x^{2}-5x-24=0
-24 লাভ কৰিবৰ বাবে -28 আৰু 4 যোগ কৰক৷
a+b=-5 ab=-24
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-5x-24ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-24 2,-12 3,-8 4,-6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -24 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-24=-23 2-12=-10 3-8=-5 4-6=-2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x-8\right)\left(x+3\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=8 x=-3
সমীকৰণ উলিয়াবলৈ, x-8=0 আৰু x+3=0 সমাধান কৰক।
x^{2}-5x-28+4=0
উভয় কাষে 4 যোগ কৰক।
x^{2}-5x-24=0
-24 লাভ কৰিবৰ বাবে -28 আৰু 4 যোগ কৰক৷
a+b=-5 ab=1\left(-24\right)=-24
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-24 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
1,-24 2,-12 3,-8 4,-6
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে ঋণাত্মক সংখ্যাটোৰ যোগাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -24 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
1-24=-23 2-12=-10 3-8=-5 4-6=-2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=3
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -5।
\left(x^{2}-8x\right)+\left(3x-24\right)
x^{2}-5x-24ক \left(x^{2}-8x\right)+\left(3x-24\right) হিচাপে পুনৰ লিখক।
x\left(x-8\right)+3\left(x-8\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 3ৰ গুণনীয়ক উলিয়াওক।
\left(x-8\right)\left(x+3\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-8ৰ গুণনীয়ক উলিয়াওক।
x=8 x=-3
সমীকৰণ উলিয়াবলৈ, x-8=0 আৰু x+3=0 সমাধান কৰক।
x^{2}-5x-28=-4
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x^{2}-5x-28-\left(-4\right)=-4-\left(-4\right)
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
x^{2}-5x-28-\left(-4\right)=0
ইয়াৰ নিজৰ পৰা -4 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-5x-24=0
-28-ৰ পৰা -4 বিয়োগ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-24\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -5, c-ৰ বাবে -24 চাবষ্টিটিউট৷
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-24\right)}}{2}
বৰ্গ -5৷
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2}
-4 বাৰ -24 পুৰণ কৰক৷
x=\frac{-\left(-5\right)±\sqrt{121}}{2}
96 লৈ 25 যোগ কৰক৷
x=\frac{-\left(-5\right)±11}{2}
121-ৰ বৰ্গমূল লওক৷
x=\frac{5±11}{2}
-5ৰ বিপৰীত হৈছে 5৷
x=\frac{16}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{5±11}{2} সমাধান কৰক৷ 11 লৈ 5 যোগ কৰক৷
x=8
2-ৰ দ্বাৰা 16 হৰণ কৰক৷
x=-\frac{6}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{5±11}{2} সমাধান কৰক৷ 5-ৰ পৰা 11 বিয়োগ কৰক৷
x=-3
2-ৰ দ্বাৰা -6 হৰণ কৰক৷
x=8 x=-3
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-5x-28=-4
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}-5x-28-\left(-28\right)=-4-\left(-28\right)
সমীকৰণৰ দুয়োটা দিশতে 28 যোগ কৰক৷
x^{2}-5x=-4-\left(-28\right)
ইয়াৰ নিজৰ পৰা -28 বিয়োগ কৰিলে 0 থাকে৷
x^{2}-5x=24
-4-ৰ পৰা -28 বিয়োগ কৰক৷
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=24+\left(-\frac{5}{2}\right)^{2}
-5 হৰণ কৰক, -\frac{5}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -\frac{5}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-5x+\frac{25}{4}=24+\frac{25}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি -\frac{5}{2} বৰ্গ কৰক৷
x^{2}-5x+\frac{25}{4}=\frac{121}{4}
\frac{25}{4} লৈ 24 যোগ কৰক৷
\left(x-\frac{5}{2}\right)^{2}=\frac{121}{4}
উৎপাদক x^{2}-5x+\frac{25}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-\frac{5}{2}=\frac{11}{2} x-\frac{5}{2}=-\frac{11}{2}
সৰলীকৰণ৷
x=8 x=-3
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{2} যোগ কৰক৷