মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}+x=0
শূণ্যৰ লগত যিকোনো যোগ কৰিলে একেটাই দিয়ে৷
x\left(x+1\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=-1
সমীকৰণ উলিয়াবলৈ, x=0 আৰু x+1=0 সমাধান কৰক।
x^{2}+x=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-1±\sqrt{1^{2}}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 1, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-1±1}{2}
1^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{0}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-1±1}{2} সমাধান কৰক৷ 1 লৈ -1 যোগ কৰক৷
x=0
2-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=-\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-1±1}{2} সমাধান কৰক৷ -1-ৰ পৰা 1 বিয়োগ কৰক৷
x=-1
2-ৰ দ্বাৰা -2 হৰণ কৰক৷
x=0 x=-1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}+x=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}+x+\left(\frac{1}{2}\right)^{2}=\left(\frac{1}{2}\right)^{2}
1 হৰণ কৰক, \frac{1}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{1}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+x+\frac{1}{4}=\frac{1}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{1}{2} বৰ্গ কৰক৷
\left(x+\frac{1}{2}\right)^{2}=\frac{1}{4}
উৎপাদক x^{2}+x+\frac{1}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{1}{2}=\frac{1}{2} x+\frac{1}{2}=-\frac{1}{2}
সৰলীকৰণ৷
x=0 x=-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{1}{2} বিয়োগ কৰক৷