মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}+7x-8=0
দুয়োটা দিশৰ পৰা 8 বিয়োগ কৰক৷
a+b=7 ab=-8
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}+7x-8ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,8 -2,4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -8 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+8=7 -2+4=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-1 b=8
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 7।
\left(x-1\right)\left(x+8\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=1 x=-8
সমীকৰণ উলিয়াবলৈ, x-1=0 আৰু x+8=0 সমাধান কৰক।
x^{2}+7x-8=0
দুয়োটা দিশৰ পৰা 8 বিয়োগ কৰক৷
a+b=7 ab=1\left(-8\right)=-8
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-8 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,8 -2,4
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -8 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+8=7 -2+4=2
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-1 b=8
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 7।
\left(x^{2}-x\right)+\left(8x-8\right)
x^{2}+7x-8ক \left(x^{2}-x\right)+\left(8x-8\right) হিচাপে পুনৰ লিখক।
x\left(x-1\right)+8\left(x-1\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 8ৰ গুণনীয়ক উলিয়াওক।
\left(x-1\right)\left(x+8\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-1ৰ গুণনীয়ক উলিয়াওক।
x=1 x=-8
সমীকৰণ উলিয়াবলৈ, x-1=0 আৰু x+8=0 সমাধান কৰক।
x^{2}+7x=8
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x^{2}+7x-8=8-8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 8 বিয়োগ কৰক৷
x^{2}+7x-8=0
ইয়াৰ নিজৰ পৰা 8 বিয়োগ কৰিলে 0 থাকে৷
x=\frac{-7±\sqrt{7^{2}-4\left(-8\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 7, c-ৰ বাবে -8 চাবষ্টিটিউট৷
x=\frac{-7±\sqrt{49-4\left(-8\right)}}{2}
বৰ্গ 7৷
x=\frac{-7±\sqrt{49+32}}{2}
-4 বাৰ -8 পুৰণ কৰক৷
x=\frac{-7±\sqrt{81}}{2}
32 লৈ 49 যোগ কৰক৷
x=\frac{-7±9}{2}
81-ৰ বৰ্গমূল লওক৷
x=\frac{2}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-7±9}{2} সমাধান কৰক৷ 9 লৈ -7 যোগ কৰক৷
x=1
2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=-\frac{16}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-7±9}{2} সমাধান কৰক৷ -7-ৰ পৰা 9 বিয়োগ কৰক৷
x=-8
2-ৰ দ্বাৰা -16 হৰণ কৰক৷
x=1 x=-8
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}+7x=8
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=8+\left(\frac{7}{2}\right)^{2}
7 হৰণ কৰক, \frac{7}{2} লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে \frac{7}{2}ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+7x+\frac{49}{4}=8+\frac{49}{4}
ভগ্নাংশৰ নিমাৰেটৰ আৰু ডেনোমিনেটৰ দুয়োটাকে বৰ্গীকৰণ কৰি \frac{7}{2} বৰ্গ কৰক৷
x^{2}+7x+\frac{49}{4}=\frac{81}{4}
\frac{49}{4} লৈ 8 যোগ কৰক৷
\left(x+\frac{7}{2}\right)^{2}=\frac{81}{4}
উৎপাদক x^{2}+7x+\frac{49}{4} । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+\frac{7}{2}=\frac{9}{2} x+\frac{7}{2}=-\frac{9}{2}
সৰলীকৰণ৷
x=1 x=-8
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{7}{2} বিয়োগ কৰক৷