মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

a+b=6 ab=-91
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}+6x-91ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,91 -7,13
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -91 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+91=90 -7+13=6
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-7 b=13
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 6।
\left(x-7\right)\left(x+13\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=7 x=-13
সমীকৰণ উলিয়াবলৈ, x-7=0 আৰু x+13=0 সমাধান কৰক।
a+b=6 ab=1\left(-91\right)=-91
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx-91 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,91 -7,13
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -91 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+91=90 -7+13=6
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-7 b=13
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 6।
\left(x^{2}-7x\right)+\left(13x-91\right)
x^{2}+6x-91ক \left(x^{2}-7x\right)+\left(13x-91\right) হিচাপে পুনৰ লিখক।
x\left(x-7\right)+13\left(x-7\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত 13ৰ গুণনীয়ক উলিয়াওক।
\left(x-7\right)\left(x+13\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-7ৰ গুণনীয়ক উলিয়াওক।
x=7 x=-13
সমীকৰণ উলিয়াবলৈ, x-7=0 আৰু x+13=0 সমাধান কৰক।
x^{2}+6x-91=0
এই সূত্ৰৰ সকলো সমীকৰণ ax^{2}+bx+c=0-ক কুৱাড্ৰেটিক সূত্ৰ ব্যৱহাৰ কৰি সমাধান কৰিব পাৰি: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. কুৱাড্ৰেটিক সূত্ৰই আপোনাক দুটা সমাধান আগবঢ়াই, এটা যেতিয়া ± যোগ কৰা হয় আৰু এটা যেতিয়া ইয়াক বিয়োগ কৰা হয়৷
x=\frac{-6±\sqrt{6^{2}-4\left(-91\right)}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে 6, c-ৰ বাবে -91 চাবষ্টিটিউট৷
x=\frac{-6±\sqrt{36-4\left(-91\right)}}{2}
বৰ্গ 6৷
x=\frac{-6±\sqrt{36+364}}{2}
-4 বাৰ -91 পুৰণ কৰক৷
x=\frac{-6±\sqrt{400}}{2}
364 লৈ 36 যোগ কৰক৷
x=\frac{-6±20}{2}
400-ৰ বৰ্গমূল লওক৷
x=\frac{14}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{-6±20}{2} সমাধান কৰক৷ 20 লৈ -6 যোগ কৰক৷
x=7
2-ৰ দ্বাৰা 14 হৰণ কৰক৷
x=-\frac{26}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{-6±20}{2} সমাধান কৰক৷ -6-ৰ পৰা 20 বিয়োগ কৰক৷
x=-13
2-ৰ দ্বাৰা -26 হৰণ কৰক৷
x=7 x=-13
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}+6x-91=0
এইটোৰ দৰে কুৱাড্ৰেটিক সমীকৰণসমূহক বৰ্গ সম্পূৰ্ণ কৰি সমাধান কৰিব পাৰি৷ বৰ্গ সম্পূৰ্ণ কৰিবৰ বাবে, সমীকৰণটো x^{2}+bx=c ৰূপত থাকিব লাগিব৷
x^{2}+6x-91-\left(-91\right)=-\left(-91\right)
সমীকৰণৰ দুয়োটা দিশতে 91 যোগ কৰক৷
x^{2}+6x=-\left(-91\right)
ইয়াৰ নিজৰ পৰা -91 বিয়োগ কৰিলে 0 থাকে৷
x^{2}+6x=91
0-ৰ পৰা -91 বিয়োগ কৰক৷
x^{2}+6x+3^{2}=91+3^{2}
6 হৰণ কৰক, 3 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে 3ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}+6x+9=91+9
বৰ্গ 3৷
x^{2}+6x+9=100
9 লৈ 91 যোগ কৰক৷
\left(x+3\right)^{2}=100
উৎপাদক x^{2}+6x+9 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x+3\right)^{2}}=\sqrt{100}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x+3=10 x+3=-10
সৰলীকৰণ৷
x=7 x=-13
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3 বিয়োগ কৰক৷