মুখ্য সমললৈ এৰি যাওক
x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x^{2}-12x+36=4
\left(x-6\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-12x+36-4=0
দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
x^{2}-12x+32=0
32 লাভ কৰিবলৈ 36-ৰ পৰা 4 বিয়োগ কৰক৷
a+b=-12 ab=32
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-12x+32ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-32 -2,-16 -4,-8
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 32 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-32=-33 -2-16=-18 -4-8=-12
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -12।
\left(x-8\right)\left(x-4\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=8 x=4
সমীকৰণ উলিয়াবলৈ, x-8=0 আৰু x-4=0 সমাধান কৰক।
x^{2}-12x+36=4
\left(x-6\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-12x+36-4=0
দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
x^{2}-12x+32=0
32 লাভ কৰিবলৈ 36-ৰ পৰা 4 বিয়োগ কৰক৷
a+b=-12 ab=1\times 32=32
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+32 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,-32 -2,-16 -4,-8
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। যিবোৰ যোৰাই গুণফল 32 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1-32=-33 -2-16=-18 -4-8=-12
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=-8 b=-4
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল -12।
\left(x^{2}-8x\right)+\left(-4x+32\right)
x^{2}-12x+32ক \left(x^{2}-8x\right)+\left(-4x+32\right) হিচাপে পুনৰ লিখক।
x\left(x-8\right)-4\left(x-8\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -4ৰ গুণনীয়ক উলিয়াওক।
\left(x-8\right)\left(x-4\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-8ৰ গুণনীয়ক উলিয়াওক।
x=8 x=4
সমীকৰণ উলিয়াবলৈ, x-8=0 আৰু x-4=0 সমাধান কৰক।
x^{2}-12x+36=4
\left(x-6\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-12x+36-4=0
দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
x^{2}-12x+32=0
32 লাভ কৰিবলৈ 36-ৰ পৰা 4 বিয়োগ কৰক৷
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 32}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -12, c-ৰ বাবে 32 চাবষ্টিটিউট৷
x=\frac{-\left(-12\right)±\sqrt{144-4\times 32}}{2}
বৰ্গ -12৷
x=\frac{-\left(-12\right)±\sqrt{144-128}}{2}
-4 বাৰ 32 পুৰণ কৰক৷
x=\frac{-\left(-12\right)±\sqrt{16}}{2}
-128 লৈ 144 যোগ কৰক৷
x=\frac{-\left(-12\right)±4}{2}
16-ৰ বৰ্গমূল লওক৷
x=\frac{12±4}{2}
-12ৰ বিপৰীত হৈছে 12৷
x=\frac{16}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{12±4}{2} সমাধান কৰক৷ 4 লৈ 12 যোগ কৰক৷
x=8
2-ৰ দ্বাৰা 16 হৰণ কৰক৷
x=\frac{8}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{12±4}{2} সমাধান কৰক৷ 12-ৰ পৰা 4 বিয়োগ কৰক৷
x=4
2-ৰ দ্বাৰা 8 হৰণ কৰক৷
x=8 x=4
সমীকৰণটো এতিয়া সমাধান হৈছে৷
\sqrt{\left(x-6\right)^{2}}=\sqrt{4}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-6=2 x-6=-2
সৰলীকৰণ৷
x=8 x=4
সমীকৰণৰ দুয়োটা দিশতে 6 যোগ কৰক৷