x-ৰ বাবে সমাধান কৰক
x=12
x=0
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
-6x লাভ কৰিবলৈ -4x আৰু -2x একত্ৰ কৰক৷
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
5 লাভ কৰিবৰ বাবে 4 আৰু 1 যোগ কৰক৷
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
3x^{2} লাভ কৰিবলৈ 2x^{2} আৰু x^{2} একত্ৰ কৰক৷
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
\left(x+1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
3x^{2}-6x+5=2x^{2}+6x+1+4
6x লাভ কৰিবলৈ 2x আৰু 4x একত্ৰ কৰক৷
3x^{2}-6x+5=2x^{2}+6x+5
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
3x^{2}-6x+5-2x^{2}=6x+5
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-6x+5=6x+5
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-6x+5-6x=5
দুয়োটা দিশৰ পৰা 6x বিয়োগ কৰক৷
x^{2}-12x+5=5
-12x লাভ কৰিবলৈ -6x আৰু -6x একত্ৰ কৰক৷
x^{2}-12x+5-5=0
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x^{2}-12x=0
0 লাভ কৰিবলৈ 5-ৰ পৰা 5 বিয়োগ কৰক৷
x\left(x-12\right)=0
xৰ গুণনীয়ক উলিয়াওক।
x=0 x=12
সমীকৰণ উলিয়াবলৈ, x=0 আৰু x-12=0 সমাধান কৰক।
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
-6x লাভ কৰিবলৈ -4x আৰু -2x একত্ৰ কৰক৷
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
5 লাভ কৰিবৰ বাবে 4 আৰু 1 যোগ কৰক৷
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
3x^{2} লাভ কৰিবলৈ 2x^{2} আৰু x^{2} একত্ৰ কৰক৷
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
\left(x+1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
3x^{2}-6x+5=2x^{2}+6x+1+4
6x লাভ কৰিবলৈ 2x আৰু 4x একত্ৰ কৰক৷
3x^{2}-6x+5=2x^{2}+6x+5
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
3x^{2}-6x+5-2x^{2}=6x+5
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-6x+5=6x+5
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-6x+5-6x=5
দুয়োটা দিশৰ পৰা 6x বিয়োগ কৰক৷
x^{2}-12x+5=5
-12x লাভ কৰিবলৈ -6x আৰু -6x একত্ৰ কৰক৷
x^{2}-12x+5-5=0
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x^{2}-12x=0
0 লাভ কৰিবলৈ 5-ৰ পৰা 5 বিয়োগ কৰক৷
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -12, c-ৰ বাবে 0 চাবষ্টিটিউট৷
x=\frac{-\left(-12\right)±12}{2}
\left(-12\right)^{2}-ৰ বৰ্গমূল লওক৷
x=\frac{12±12}{2}
-12ৰ বিপৰীত হৈছে 12৷
x=\frac{24}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{12±12}{2} সমাধান কৰক৷ 12 লৈ 12 যোগ কৰক৷
x=12
2-ৰ দ্বাৰা 24 হৰণ কৰক৷
x=\frac{0}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{12±12}{2} সমাধান কৰক৷ 12-ৰ পৰা 12 বিয়োগ কৰক৷
x=0
2-ৰ দ্বাৰা 0 হৰণ কৰক৷
x=12 x=0
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x^{2}-4x+4+\left(x-1\right)^{2}+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4+x^{2}-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
\left(x-1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
2x^{2}-4x+4-2x+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
2x^{2}-6x+4+1+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
-6x লাভ কৰিবলৈ -4x আৰু -2x একত্ৰ কৰক৷
2x^{2}-6x+5+x^{2}=\left(x+1\right)^{2}+\left(x+2\right)^{2}
5 লাভ কৰিবৰ বাবে 4 আৰু 1 যোগ কৰক৷
3x^{2}-6x+5=\left(x+1\right)^{2}+\left(x+2\right)^{2}
3x^{2} লাভ কৰিবলৈ 2x^{2} আৰু x^{2} একত্ৰ কৰক৷
3x^{2}-6x+5=x^{2}+2x+1+\left(x+2\right)^{2}
\left(x+1\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
3x^{2}-6x+5=x^{2}+2x+1+x^{2}+4x+4
\left(x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
3x^{2}-6x+5=2x^{2}+2x+1+4x+4
2x^{2} লাভ কৰিবলৈ x^{2} আৰু x^{2} একত্ৰ কৰক৷
3x^{2}-6x+5=2x^{2}+6x+1+4
6x লাভ কৰিবলৈ 2x আৰু 4x একত্ৰ কৰক৷
3x^{2}-6x+5=2x^{2}+6x+5
5 লাভ কৰিবৰ বাবে 1 আৰু 4 যোগ কৰক৷
3x^{2}-6x+5-2x^{2}=6x+5
দুয়োটা দিশৰ পৰা 2x^{2} বিয়োগ কৰক৷
x^{2}-6x+5=6x+5
x^{2} লাভ কৰিবলৈ 3x^{2} আৰু -2x^{2} একত্ৰ কৰক৷
x^{2}-6x+5-6x=5
দুয়োটা দিশৰ পৰা 6x বিয়োগ কৰক৷
x^{2}-12x+5=5
-12x লাভ কৰিবলৈ -6x আৰু -6x একত্ৰ কৰক৷
x^{2}-12x+5-5=0
দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x^{2}-12x=0
0 লাভ কৰিবলৈ 5-ৰ পৰা 5 বিয়োগ কৰক৷
x^{2}-12x+\left(-6\right)^{2}=\left(-6\right)^{2}
-12 হৰণ কৰক, -6 লাভ কৰিবলৈ 2ৰ দ্বাৰা x ৰাশিৰ দ্বিঘাত৷ ইয়াৰ পাছত সমীকৰণৰ দুয়োটা দিশতে -6ৰ বৰ্গ যোগ কৰক৷ এই পদক্ষেপে সমীকৰণৰ বাঁও দিশক এটা নিখুত বৰ্গত পৰিণত কৰে৷
x^{2}-12x+36=36
বৰ্গ -6৷
\left(x-6\right)^{2}=36
উৎপাদক x^{2}-12x+36 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-6\right)^{2}}=\sqrt{36}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-6=6 x-6=-6
সৰলীকৰণ৷
x=12 x=0
সমীকৰণৰ দুয়োটা দিশতে 6 যোগ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}