মুখ্য সমললৈ এৰি যাওক
z-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
z-ৰ বাবে সমাধান কৰক
Tick mark Image
x-ৰ বাবে সমাধান কৰক (জটিল সমাধান)
Tick mark Image
x-ৰ বাবে সমাধান কৰক
Tick mark Image

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4\left(\sqrt{\frac{1}{4-x^{2}}}\right)^{2}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
\left(-2\sqrt{\frac{1}{4-x^{2}}}x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
4\times \frac{1}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
2ৰ পাৱাৰ \sqrt{\frac{1}{4-x^{2}}}ক গণনা কৰক আৰু \frac{1}{4-x^{2}} লাভ কৰক৷
\frac{4}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এটা একক ভগ্নাংশ ৰূপে 4\times \frac{1}{4-x^{2}} প্ৰকাশ কৰক৷
\frac{4x^{2}}{4-x^{2}}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এটা একক ভগ্নাংশ ৰূপে \frac{4}{4-x^{2}}x^{2} প্ৰকাশ কৰক৷
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
উৎপাদক 4-x^{2}৷
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 4 বাৰ \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} পুৰণ কৰক৷
\frac{4x^{2}+4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
যিহেতু \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} আৰু \frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{4x^{2}-4x^{2}-8x+8x+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
4x^{2}+4\left(x-2\right)\left(-x-2\right)ত গুণনিয়ক কৰক৷
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
4x^{2}-4x^{2}-8x+8x+16ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ z^{2} বাৰ \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} পুৰণ কৰক৷
\frac{16+z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
যিহেতু \frac{16}{\left(x-2\right)\left(-x-2\right)} আৰু \frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
16+z^{2}\left(x-2\right)\left(-x-2\right)ত গুণনিয়ক কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(2-z+2\sqrt{\frac{1}{4-x^{2}}}x\right)^{2}
2 লাভ কৰিবলৈ 4-ৰ পৰা 2 বিয়োগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\left(\sqrt{\frac{1}{-x^{2}+4}}\right)^{2}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
বৰ্গ 2-z+2\sqrt{\frac{1}{4-x^{2}}}x৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\times \frac{1}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
2ৰ পাৱাৰ \sqrt{\frac{1}{-x^{2}+4}}ক গণনা কৰক আৰু \frac{1}{-x^{2}+4} লাভ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
এটা একক ভগ্নাংশ ৰূপে 4\times \frac{1}{-x^{2}+4} প্ৰকাশ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4x^{2}}{-x^{2}+4}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
এটা একক ভগ্নাংশ ৰূপে \frac{4}{-x^{2}+4}x^{2} প্ৰকাশ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4z+4-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
উৎপাদক -x^{2}+4৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ z^{2}-4z+4 বাৰ \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} পুৰণ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
যিহেতু \frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} আৰু \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}ত গুণনিয়ক কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
-x-2ৰ দ্বাৰা x-2 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
-x-2ৰ দ্বাৰা x-2 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x-\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
দুয়োটা দিশৰ পৰা \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} বিয়োগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
যিহেতু \frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4} আৰু \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)ত গুণনিয়ক কৰক৷
\frac{16z-4zx^{2}}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16zৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4z\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
\frac{16z-4zx^{2}}{-x^{2}+4}ত ইতিমধ্যে উপাদান নোহোৱা ৰাশিবোৰক উপাদান কৰক৷
4z-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে \left(x-2\right)\left(-x-2\right) সমান কৰক৷
4z-8\sqrt{\frac{1}{4-x^{2}}}x+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x
উভয় কাষে 4\sqrt{\frac{1}{-x^{2}+4}}xz যোগ কৰক।
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x+8\sqrt{\frac{1}{4-x^{2}}}x
উভয় কাষে 8\sqrt{\frac{1}{4-x^{2}}}x যোগ কৰক।
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=16\sqrt{\frac{1}{-x^{2}+4}}x
16\sqrt{\frac{1}{-x^{2}+4}}x লাভ কৰিবলৈ 8\sqrt{\frac{1}{-x^{2}+4}}x আৰু 8\sqrt{\frac{1}{4-x^{2}}}x একত্ৰ কৰক৷
\left(4+4\sqrt{\frac{1}{-x^{2}+4}}x\right)z=16\sqrt{\frac{1}{-x^{2}+4}}x
z থকা সকলো পদ একত্ৰিত কৰক৷
\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z=16\sqrt{\frac{1}{4-x^{2}}}x
সমীকৰণটো মান্য ৰূপত আছে৷
\frac{\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z}{4\sqrt{\frac{1}{4-x^{2}}}x+4}=\frac{16\left(4-x^{2}\right)^{-\frac{1}{2}}x}{4\sqrt{\frac{1}{4-x^{2}}}x+4}
4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
z=\frac{16\left(4-x^{2}\right)^{-\frac{1}{2}}x}{4\sqrt{\frac{1}{4-x^{2}}}x+4}
4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা হৰণ কৰিলে 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
z=\frac{4x}{\sqrt{4-x^{2}}+x}
4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা 16\left(-x^{2}+4\right)^{-\frac{1}{2}}x হৰণ কৰক৷
4\left(\sqrt{\frac{1}{4-x^{2}}}\right)^{2}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
\left(-2\sqrt{\frac{1}{4-x^{2}}}x+2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
4\times \frac{1}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
2ৰ পাৱাৰ \sqrt{\frac{1}{4-x^{2}}}ক গণনা কৰক আৰু \frac{1}{4-x^{2}} লাভ কৰক৷
\frac{4}{4-x^{2}}x^{2}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এটা একক ভগ্নাংশ ৰূপে 4\times \frac{1}{4-x^{2}} প্ৰকাশ কৰক৷
\frac{4x^{2}}{4-x^{2}}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এটা একক ভগ্নাংশ ৰূপে \frac{4}{4-x^{2}}x^{2} প্ৰকাশ কৰক৷
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+4+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
উৎপাদক 4-x^{2}৷
\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 4 বাৰ \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} পুৰণ কৰক৷
\frac{4x^{2}+4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
যিহেতু \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)} আৰু \frac{4\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{4x^{2}-4x^{2}-8x+8x+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
4x^{2}+4\left(x-2\right)\left(-x-2\right)ত গুণনিয়ক কৰক৷
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+z^{2}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
4x^{2}-4x^{2}-8x+8x+16ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x+\frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ z^{2} বাৰ \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} পুৰণ কৰক৷
\frac{16+z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
যিহেতু \frac{16}{\left(x-2\right)\left(-x-2\right)} আৰু \frac{z^{2}\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
16+z^{2}\left(x-2\right)\left(-x-2\right)ত গুণনিয়ক কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(4-z+2\sqrt{\frac{1}{4-x^{2}}}x-2\right)^{2}
16-z^{2}x^{2}-2z^{2}x+2z^{2}x+4z^{2}ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\left(2-z+2\sqrt{\frac{1}{4-x^{2}}}x\right)^{2}
2 লাভ কৰিবলৈ 4-ৰ পৰা 2 বিয়োগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\left(\sqrt{\frac{1}{-x^{2}+4}}\right)^{2}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
বৰ্গ 2-z+2\sqrt{\frac{1}{4-x^{2}}}x৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+4\times \frac{1}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
2ৰ পাৱাৰ \sqrt{\frac{1}{-x^{2}+4}}ক গণনা কৰক আৰু \frac{1}{-x^{2}+4} লাভ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4}{-x^{2}+4}x^{2}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
এটা একক ভগ্নাংশ ৰূপে 4\times \frac{1}{-x^{2}+4} প্ৰকাশ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4\sqrt{\frac{1}{-x^{2}+4}}xz-4z+\frac{4x^{2}}{-x^{2}+4}+8\sqrt{\frac{1}{-x^{2}+4}}x+4
এটা একক ভগ্নাংশ ৰূপে \frac{4}{-x^{2}+4}x^{2} প্ৰকাশ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=z^{2}-4z+4-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
উৎপাদক -x^{2}+4৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+\frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}+8\sqrt{\frac{1}{-x^{2}+4}}x
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ z^{2}-4z+4 বাৰ \frac{\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} পুৰণ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
যিহেতু \frac{\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)} আৰু \frac{4x^{2}}{\left(x-2\right)\left(-x-2\right)}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
\left(z^{2}-4z+4\right)\left(x-2\right)\left(-x-2\right)+4x^{2}ত গুণনিয়ক কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
4z^{2}-z^{2}x^{2}-16z+4zx^{2}-4x^{2}+16+4x^{2}ৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{\left(x-2\right)\left(-x-2\right)}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
-x-2ৰ দ্বাৰা x-2 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
-x-2ৰ দ্বাৰা x-2 পূৰণ কৰিবলৈ বিভাজক সম্পত্তি ব্যৱহাৰ কৰক আৰু পদসমূহৰ দৰে একত্ৰিত কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x-\frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
দুয়োটা দিশৰ পৰা \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4} বিয়োগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
যিহেতু \frac{4z^{2}-z^{2}x^{2}+16}{-x^{2}+4} আৰু \frac{16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z}{-x^{2}+4}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\frac{4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16z}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
4z^{2}-z^{2}x^{2}+16-\left(16-z^{2}x^{2}+4z^{2}+4zx^{2}-16z\right)ত গুণনিয়ক কৰক৷
\frac{16z-4zx^{2}}{-x^{2}+4}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
4z^{2}-z^{2}x^{2}+16-16+z^{2}x^{2}-4z^{2}-4zx^{2}+16zৰ একেধৰণ পদবোৰ একত্ৰিত কৰক৷
\frac{4z\left(x-2\right)\left(-x-2\right)}{\left(x-2\right)\left(-x-2\right)}-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
\frac{16z-4zx^{2}}{-x^{2}+4}ত ইতিমধ্যে উপাদান নোহোৱা ৰাশিবোৰক উপাদান কৰক৷
4z-8\sqrt{\frac{1}{4-x^{2}}}x=-4\sqrt{\frac{1}{-x^{2}+4}}xz+8\sqrt{\frac{1}{-x^{2}+4}}x
নিউমেটৰ আৰু ডেনোমিনেটৰ দুয়োটাতে \left(x-2\right)\left(-x-2\right) সমান কৰক৷
4z-8\sqrt{\frac{1}{4-x^{2}}}x+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x
উভয় কাষে 4\sqrt{\frac{1}{-x^{2}+4}}xz যোগ কৰক।
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=8\sqrt{\frac{1}{-x^{2}+4}}x+8\sqrt{\frac{1}{4-x^{2}}}x
উভয় কাষে 8\sqrt{\frac{1}{4-x^{2}}}x যোগ কৰক।
4z+4\sqrt{\frac{1}{-x^{2}+4}}xz=16\sqrt{\frac{1}{-x^{2}+4}}x
16\sqrt{\frac{1}{-x^{2}+4}}x লাভ কৰিবলৈ 8\sqrt{\frac{1}{-x^{2}+4}}x আৰু 8\sqrt{\frac{1}{4-x^{2}}}x একত্ৰ কৰক৷
\left(4+4\sqrt{\frac{1}{-x^{2}+4}}x\right)z=16\sqrt{\frac{1}{-x^{2}+4}}x
z থকা সকলো পদ একত্ৰিত কৰক৷
\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z=16\sqrt{\frac{1}{4-x^{2}}}x
সমীকৰণটো মান্য ৰূপত আছে৷
\frac{\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)z}{4\sqrt{\frac{1}{4-x^{2}}}x+4}=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
z=\frac{16x}{\sqrt{4-x^{2}}\left(4\sqrt{\frac{1}{4-x^{2}}}x+4\right)}
4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা হৰণ কৰিলে 4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা কৰা পুৰণক পূৰ্বৰ দৰে কৰি দিয়ে৷
z=\frac{4x}{\sqrt{4-x^{2}}+x}
4+4\sqrt{\left(-x^{2}+4\right)^{-1}}x-ৰ দ্বাৰা \frac{16x}{\sqrt{4-x^{2}}} হৰণ কৰক৷