মূল্যায়ন
5
কাৰক
5
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\sqrt{\left(3-\frac{\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
3 লাভ কৰিবলৈ 6-ৰ পৰা 3 বিয়োগ কৰক৷
\sqrt{\left(\frac{3\times 2}{2}-\frac{\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 3 বাৰ \frac{2}{2} পুৰণ কৰক৷
\sqrt{\left(\frac{3\times 2-\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
যিহেতু \frac{3\times 2}{2} আৰু \frac{\sqrt{14}}{2}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ বিয়োগ কৰি বিয়োগ কৰক৷
\sqrt{\left(\frac{6-\sqrt{14}}{2}\right)^{2}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
3\times 2-\sqrt{14}ত গুণনিয়ক কৰক৷
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}}{2}+3\right)^{2}}
\frac{6-\sqrt{14}}{2}ক পাৱাৰলৈ উঠাবলৈ, লব আৰু হৰ দুয়োটাকে পাৱাৰলৈ উঠাওক আৰু তাৰপিছত বিভাজন কৰক৷
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}}{2}+\frac{3\times 2}{2}\right)^{2}}
এক্সপ্ৰেশ্বন যোগ বা বিয়োগ কৰিবলৈ, সিহঁতৰ হৰ একে কৰিবলৈ বিস্তাৰ কৰক৷ 3 বাৰ \frac{2}{2} পুৰণ কৰক৷
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}+3\times 2}{2}\right)^{2}}
যিহেতু \frac{\sqrt{14}}{2} আৰু \frac{3\times 2}{2}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\left(\frac{\sqrt{14}+6}{2}\right)^{2}}
\sqrt{14}+3\times 2ত গুণনিয়ক কৰক৷
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}}+\frac{\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
\frac{\sqrt{14}+6}{2}ক পাৱাৰলৈ উঠাবলৈ, লব আৰু হৰ দুয়োটাকে পাৱাৰলৈ উঠাওক আৰু তাৰপিছত বিভাজন কৰক৷
\sqrt{\frac{\left(6-\sqrt{14}\right)^{2}+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
যিহেতু \frac{\left(6-\sqrt{14}\right)^{2}}{2^{2}} আৰু \frac{\left(\sqrt{14}+6\right)^{2}}{2^{2}}ৰ একে ডেনোমিনেটৰ আছে, গতিকে সিহঁতক সিহঁতৰ নিউমেৰেটৰ যোগ কৰি যোগ কৰক৷
\sqrt{\frac{36-12\sqrt{14}+\left(\sqrt{14}\right)^{2}+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
\left(6-\sqrt{14}\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
\sqrt{\frac{36-12\sqrt{14}+14+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
\sqrt{14}ৰ বৰ্গমূল হৈছে 14৷
\sqrt{\frac{50-12\sqrt{14}+\left(\sqrt{14}+6\right)^{2}}{2^{2}}}
50 লাভ কৰিবৰ বাবে 36 আৰু 14 যোগ কৰক৷
\sqrt{\frac{50-12\sqrt{14}+\left(\sqrt{14}\right)^{2}+12\sqrt{14}+36}{2^{2}}}
\left(\sqrt{14}+6\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যৱহাৰ কৰক৷
\sqrt{\frac{50-12\sqrt{14}+14+12\sqrt{14}+36}{2^{2}}}
\sqrt{14}ৰ বৰ্গমূল হৈছে 14৷
\sqrt{\frac{50-12\sqrt{14}+50+12\sqrt{14}}{2^{2}}}
50 লাভ কৰিবৰ বাবে 14 আৰু 36 যোগ কৰক৷
\sqrt{\frac{100-12\sqrt{14}+12\sqrt{14}}{2^{2}}}
100 লাভ কৰিবৰ বাবে 50 আৰু 50 যোগ কৰক৷
\sqrt{\frac{100}{2^{2}}}
0 লাভ কৰিবলৈ -12\sqrt{14} আৰু 12\sqrt{14} একত্ৰ কৰক৷
\sqrt{\frac{100}{4}}
2ৰ পাৱাৰ 2ক গণনা কৰক আৰু 4 লাভ কৰক৷
\sqrt{25}
25 লাভ কৰিবলৈ 4ৰ দ্বাৰা 100 হৰণ কৰক৷
5
25ৰ বৰ্গ মূল গণনা কৰক আৰু 5 লাভ কৰক৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}