x-ৰ বাবে সমাধান কৰক
x=6
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
\left(\sqrt{6+5x}\right)^{2}=x^{2}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গফল৷
6+5x=x^{2}
2ৰ পাৱাৰ \sqrt{6+5x}ক গণনা কৰক আৰু 6+5x লাভ কৰক৷
6+5x-x^{2}=0
দুয়োটা দিশৰ পৰা x^{2} বিয়োগ কৰক৷
-x^{2}+5x+6=0
এটা মান্য ৰূপত বহুৱাবলৈ বহুপদ পুনঃব্যৱস্থিত কৰক৷ সৰ্বোচ্চৰ পৰা নিম্ন পাৱাৰ ক্ৰমত টাৰ্মসমূহ ৰাখক৷
a+b=5 ab=-6=-6
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে -x^{2}+ax+bx+6 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
-1,6 -2,3
যিহেতু ab ঋণাত্মক, সেয়েহে a আৰু bৰ বিপৰীত সংকেত আছে। যিহেতু a+b যোগাত্মক, সেয়েহে যোগাত্মক সংখ্যাটোৰ ঋণাত্মক সংখ্যাাতকৈ ডাঙৰ পৰম মূল্য আছে। যিবোৰ যোৰাই গুণফল -6 প্ৰদান কৰে সেই অখণ্ড সংখ্যাবোৰৰ তালিকা সৃষ্টি কৰক।
-1+6=5 -2+3=1
প্ৰতিটো যোৰাৰ যোগফল গণনা কৰক।
a=6 b=-1
সমাধানটো হৈছে এনে এটা যোৰা যাৰ যোগফল 5।
\left(-x^{2}+6x\right)+\left(-x+6\right)
-x^{2}+5x+6ক \left(-x^{2}+6x\right)+\left(-x+6\right) হিচাপে পুনৰ লিখক।
-x\left(x-6\right)-\left(x-6\right)
প্ৰথম গোটত -x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-6\right)\left(-x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-6ৰ গুণনীয়ক উলিয়াওক।
x=6 x=-1
সমীকৰণ উলিয়াবলৈ, x-6=0 আৰু -x-1=0 সমাধান কৰক।
\sqrt{6+5\times 6}=6
সমীকৰণ \sqrt{6+5x}=xত xৰ বাবে বিকল্প 6৷
6=6
সৰলীকৰণ৷ মান x=6 সমীকৰণটোক সন্তুষ্ট কৰে।
\sqrt{6+5\left(-1\right)}=-1
সমীকৰণ \sqrt{6+5x}=xত xৰ বাবে বিকল্প -1৷
1=-1
সৰলীকৰণ৷ মান x=-1 সমীকৰণ সন্তুষ্ট নকৰে কাৰণ বাওঁ আৰু সোঁ কাষত বিপৰীত চিহ্ন আছে।
x=6
সমীকৰণ \sqrt{5x+6}=x-ৰ এটা একক সমাধান আছে।
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}