মুখ্য সমললৈ এৰি যাওক
ডিফাৰেনচিয়েট w.r.t. x
Tick mark Image
মূল্যায়ন
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

\frac{\mathrm{d}}{\mathrm{d}x}(\sin(12x)+x+4-x-4)
x+4ৰ বিপৰীত বিচাৰিবলৈ, প্ৰত্যেকটো পদৰ বিপৰীত অৰ্থ বিচাৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(12x)+4-4)
0 লাভ কৰিবলৈ x আৰু -x একত্ৰ কৰক৷
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(12x))
0 লাভ কৰিবলৈ 4-ৰ পৰা 4 বিয়োগ কৰক৷
\cos(12x^{1})\frac{\mathrm{d}}{\mathrm{d}x}(12x^{1})
যদি F দুটা ডিফাৰেনচিয়েবল ফাংচন f\left(u\right) আৰু u=g\left(x\right) এটা সংযোজন হয়, যি F\left(x\right)=f\left(g\left(x\right)\right), তেতিয়া f-ৰ ডিৰাইব হেটিভ F হয়, যি u সৈতে সম্বন্ধিত হয়, g-ৰ ডিৰাইভেটিভ x-ৰ সৈতে সম্বন্ধিত হয়, যি \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right)৷
\cos(12x^{1})\times 12x^{1-1}
এটা বহুপদ ৰাশিৰ যৌগিক ৰাশিটো হৈছে ইয়াৰ ৰাশিসমূহৰ যৌগিক ৰাশিৰ যোগফল৷ কোনো ধ্ৰুৱক ৰাশিৰ যৌগিক ৰাশি হৈছে 0। ax^{n}-ৰ যৌগিক ৰাশি হৈছে nax^{n-1}।
12\cos(12x^{1})
সৰলীকৰণ৷
12\cos(12x)
যিকোনো পদৰ বাবে t, t^{1}=t।