মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+3y=-2,x-2y=8
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+3y=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-3y-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
-3y-2-2y=8
অন্য সমীকৰণত x-ৰ বাবে -3y-2 স্থানাপন কৰক, x-2y=8৷
-5y-2=8
-2y লৈ -3y যোগ কৰক৷
-5y=10
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
y=-2
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3\left(-2\right)-2
x=-3y-2-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=6-2
-3 বাৰ -2 পুৰণ কৰক৷
x=4
6 লৈ -2 যোগ কৰক৷
x=4,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+3y=-2,x-2y=8
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&3\\1&-2\end{matrix}\right))\left(\begin{matrix}1&3\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
\left(\begin{matrix}1&3\\1&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&-2\end{matrix}\right))\left(\begin{matrix}-2\\8\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-3}&-\frac{3}{-2-3}\\-\frac{1}{-2-3}&\frac{1}{-2-3}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{3}{5}\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-2\\8\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-2\right)+\frac{3}{5}\times 8\\\frac{1}{5}\left(-2\right)-\frac{1}{5}\times 8\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-2\end{matrix}\right)
গণনা কৰক৷
x=4,y=-2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+3y=-2,x-2y=8
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
x-x+3y+2y=-2-8
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি x+3y=-2-ৰ পৰা x-2y=8 হৰণ কৰক৷
3y+2y=-2-8
-x লৈ x যোগ কৰক৷ চৰ্তাৱলী x আৰু -x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
5y=-2-8
2y লৈ 3y যোগ কৰক৷
5y=-10
-8 লৈ -2 যোগ কৰক৷
y=-2
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x-2\left(-2\right)=8
x-2y=8-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x+4=8
-2 বাৰ -2 পুৰণ কৰক৷
x=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
x=4,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷