মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=64,-0.12x+0.26y=0.19
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=64
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+64
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
-0.12\left(-y+64\right)+0.26y=0.19
অন্য সমীকৰণত x-ৰ বাবে -y+64 স্থানাপন কৰক, -0.12x+0.26y=0.19৷
0.12y-7.68+0.26y=0.19
-0.12 বাৰ -y+64 পুৰণ কৰক৷
0.38y-7.68=0.19
\frac{13y}{50} লৈ \frac{3y}{25} যোগ কৰক৷
0.38y=7.87
সমীকৰণৰ দুয়োটা দিশতে 7.68 যোগ কৰক৷
y=\frac{787}{38}
0.38-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{787}{38}+64
x=-y+64-ত y-ৰ বাবে \frac{787}{38}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{1645}{38}
-\frac{787}{38} লৈ 64 যোগ কৰক৷
x=\frac{1645}{38},y=\frac{787}{38}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=64,-0.12x+0.26y=0.19
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\0.19\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-0.12&0.26\end{matrix}\right))\left(\begin{matrix}64\\0.19\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.26}{0.26-\left(-0.12\right)}&-\frac{1}{0.26-\left(-0.12\right)}\\-\frac{-0.12}{0.26-\left(-0.12\right)}&\frac{1}{0.26-\left(-0.12\right)}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&-\frac{50}{19}\\\frac{6}{19}&\frac{50}{19}\end{matrix}\right)\left(\begin{matrix}64\\0.19\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64-\frac{50}{19}\times 0.19\\\frac{6}{19}\times 64+\frac{50}{19}\times 0.19\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1645}{38}\\\frac{787}{38}\end{matrix}\right)
গণনা কৰক৷
x=\frac{1645}{38},y=\frac{787}{38}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=64,-0.12x+0.26y=0.19
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-0.12x-0.12y=-0.12\times 64,-0.12x+0.26y=0.19
x আৰু -\frac{3x}{25} সমান কৰিবৰ বাবে, -0.12-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
-0.12x-0.12y=-7.68,-0.12x+0.26y=0.19
সৰলীকৰণ৷
-0.12x+0.12x-0.12y-0.26y=-7.68-0.19
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -0.12x-0.12y=-7.68-ৰ পৰা -0.12x+0.26y=0.19 হৰণ কৰক৷
-0.12y-0.26y=-7.68-0.19
\frac{3x}{25} লৈ -\frac{3x}{25} যোগ কৰক৷ চৰ্তাৱলী -\frac{3x}{25} আৰু \frac{3x}{25} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-0.38y=-7.68-0.19
-\frac{13y}{50} লৈ -\frac{3y}{25} যোগ কৰক৷
-0.38y=-7.87
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -0.19 লৈ -7.68 যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
y=\frac{787}{38}
-0.38-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
-0.12x+0.26\times \frac{787}{38}=0.19
-0.12x+0.26y=0.19-ত y-ৰ বাবে \frac{787}{38}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-0.12x+\frac{10231}{1900}=0.19
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি 0.26 বাৰ \frac{787}{38} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
-0.12x=-\frac{987}{190}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{10231}{1900} বিয়োগ কৰক৷
x=\frac{1645}{38}
-0.12-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{1645}{38},y=\frac{787}{38}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷