মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

3x-2y=10,x+y=5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3x-2y=10
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
3x=2y+10
সমীকৰণৰ দুয়োটা দিশতে 2y যোগ কৰক৷
x=\frac{1}{3}\left(2y+10\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{2}{3}y+\frac{10}{3}
\frac{1}{3} বাৰ 10+2y পুৰণ কৰক৷
\frac{2}{3}y+\frac{10}{3}+y=5
অন্য সমীকৰণত x-ৰ বাবে \frac{10+2y}{3} স্থানাপন কৰক, x+y=5৷
\frac{5}{3}y+\frac{10}{3}=5
y লৈ \frac{2y}{3} যোগ কৰক৷
\frac{5}{3}y=\frac{5}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{10}{3} বিয়োগ কৰক৷
y=1
\frac{5}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{2+10}{3}
x=\frac{2}{3}y+\frac{10}{3}-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{2}{3} লৈ \frac{10}{3} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=4,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
3x-2y=10,x+y=5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
\left(\begin{matrix}3&-2\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\1&1\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-2\right)}&-\frac{-2}{3-\left(-2\right)}\\-\frac{1}{3-\left(-2\right)}&\frac{3}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{2}{5}\\-\frac{1}{5}&\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 10+\frac{2}{5}\times 5\\-\frac{1}{5}\times 10+\frac{3}{5}\times 5\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
গণনা কৰক৷
x=4,y=1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
3x-2y=10,x+y=5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3x-2y=10,3x+3y=3\times 5
3x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
3x-2y=10,3x+3y=15
সৰলীকৰণ৷
3x-3x-2y-3y=10-15
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3x-2y=10-ৰ পৰা 3x+3y=15 হৰণ কৰক৷
-2y-3y=10-15
-3x লৈ 3x যোগ কৰক৷ চৰ্তাৱলী 3x আৰু -3x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-5y=10-15
-3y লৈ -2y যোগ কৰক৷
-5y=-5
-15 লৈ 10 যোগ কৰক৷
y=1
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x+1=5
x+y=5-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x=4,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷