মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

10x-3y=27,4x+y=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
10x-3y=27
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
10x=3y+27
সমীকৰণৰ দুয়োটা দিশতে 3y যোগ কৰক৷
x=\frac{1}{10}\left(3y+27\right)
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{10}y+\frac{27}{10}
\frac{1}{10} বাৰ 27+3y পুৰণ কৰক৷
4\left(\frac{3}{10}y+\frac{27}{10}\right)+y=2
অন্য সমীকৰণত x-ৰ বাবে \frac{27+3y}{10} স্থানাপন কৰক, 4x+y=2৷
\frac{6}{5}y+\frac{54}{5}+y=2
4 বাৰ \frac{27+3y}{10} পুৰণ কৰক৷
\frac{11}{5}y+\frac{54}{5}=2
y লৈ \frac{6y}{5} যোগ কৰক৷
\frac{11}{5}y=-\frac{44}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{54}{5} বিয়োগ কৰক৷
y=-4
\frac{11}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{3}{10}\left(-4\right)+\frac{27}{10}
x=\frac{3}{10}y+\frac{27}{10}-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{6}{5}+\frac{27}{10}
\frac{3}{10} বাৰ -4 পুৰণ কৰক৷
x=\frac{3}{2}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{6}{5} লৈ \frac{27}{10} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{3}{2},y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
10x-3y=27,4x+y=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}10&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}10&-3\\4&1\end{matrix}\right))\left(\begin{matrix}10&-3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-3\\4&1\end{matrix}\right))\left(\begin{matrix}27\\2\end{matrix}\right)
\left(\begin{matrix}10&-3\\4&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-3\\4&1\end{matrix}\right))\left(\begin{matrix}27\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-3\\4&1\end{matrix}\right))\left(\begin{matrix}27\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10-\left(-3\times 4\right)}&-\frac{-3}{10-\left(-3\times 4\right)}\\-\frac{4}{10-\left(-3\times 4\right)}&\frac{10}{10-\left(-3\times 4\right)}\end{matrix}\right)\left(\begin{matrix}27\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{3}{22}\\-\frac{2}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}27\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 27+\frac{3}{22}\times 2\\-\frac{2}{11}\times 27+\frac{5}{11}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\-4\end{matrix}\right)
গণনা কৰক৷
x=\frac{3}{2},y=-4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
10x-3y=27,4x+y=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 10x+4\left(-3\right)y=4\times 27,10\times 4x+10y=10\times 2
10x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 10-ৰ দ্বাৰা পুৰণ কৰক৷
40x-12y=108,40x+10y=20
সৰলীকৰণ৷
40x-40x-12y-10y=108-20
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 40x-12y=108-ৰ পৰা 40x+10y=20 হৰণ কৰক৷
-12y-10y=108-20
-40x লৈ 40x যোগ কৰক৷ চৰ্তাৱলী 40x আৰু -40x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-22y=108-20
-10y লৈ -12y যোগ কৰক৷
-22y=88
-20 লৈ 108 যোগ কৰক৷
y=-4
-22-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x-4=2
4x+y=2-ত y-ৰ বাবে -4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x=6
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
x=\frac{3}{2}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{3}{2},y=-4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷