x-ৰ বাবে সমাধান কৰক
x=3
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
1=\left(x-2\right)\left(x-2\right)
চলক x, 0,1,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ x\left(x-2\right)\left(x-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{3}-3x^{2}+2x,x\left(x-1\right) ৰ সাধাৰণ বিভাজক৷
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} লাভ কৰিবৰ বাবে x-2 আৰু x-2 পুৰণ কৰক৷
1=x^{2}-4x+4
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4=1
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}-4x+4-1=0
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x^{2}-4x+3=0
3 লাভ কৰিবলৈ 4-ৰ পৰা 1 বিয়োগ কৰক৷
a+b=-4 ab=3
সমীকৰণ সমাধান কৰিবলৈ সূত্ৰ x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ব্যৱহাৰ কৰি x^{2}-4x+3ৰ উৎপাদক উলিয়াওক। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-3 b=-1
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x-3\right)\left(x-1\right)
লাভ কৰা মূল্য ব্যৱহাৰ কৰি উৎপাদক উলিওৱা ৰাশি \left(x+a\right)\left(x+b\right) পুনৰ লিখক।
x=3 x=1
সমীকৰণ উলিয়াবলৈ, x-3=0 আৰু x-1=0 সমাধান কৰক।
x=3
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
1=\left(x-2\right)\left(x-2\right)
চলক x, 0,1,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ x\left(x-2\right)\left(x-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{3}-3x^{2}+2x,x\left(x-1\right) ৰ সাধাৰণ বিভাজক৷
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} লাভ কৰিবৰ বাবে x-2 আৰু x-2 পুৰণ কৰক৷
1=x^{2}-4x+4
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4=1
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}-4x+4-1=0
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x^{2}-4x+3=0
3 লাভ কৰিবলৈ 4-ৰ পৰা 1 বিয়োগ কৰক৷
a+b=-4 ab=1\times 3=3
সমীকৰণ সমাধান কৰিবলৈ, বাওঁহাতে গ্ৰুপিং কৰি উৎপাদক উলিয়াওক। প্ৰথমে বাওঁহাতে x^{2}+ax+bx+3 হিচাপে পুনৰ লিখিব লাগিব। a আৰু b বিচাৰিবলৈ, সমাধান কৰিবলগীয়া এটা ছিষ্টেম ছেট আপ কৰক।
a=-3 b=-1
যিহেতু ab যোগাত্মক, সেয়েহে a আৰু bৰ অনুৰূপ সংকেত আছে। যিহেতু a+b ঋণাত্মক, সেয়েহে a আৰু b দুয়োটাই ঋণাত্মক। এনেধৰণৰ একমাত্ৰ যোৰা হৈছে ছিষ্টেম সমাধান।
\left(x^{2}-3x\right)+\left(-x+3\right)
x^{2}-4x+3ক \left(x^{2}-3x\right)+\left(-x+3\right) হিচাপে পুনৰ লিখক।
x\left(x-3\right)-\left(x-3\right)
প্ৰথম গোটত x আৰু দ্বিতীয় গোটত -1ৰ গুণনীয়ক উলিয়াওক।
\left(x-3\right)\left(x-1\right)
বিতৰণ ধৰ্ম ব্যৱহাৰ কৰি সাধাৰণ টাৰ্ম x-3ৰ গুণনীয়ক উলিয়াওক।
x=3 x=1
সমীকৰণ উলিয়াবলৈ, x-3=0 আৰু x-1=0 সমাধান কৰক।
x=3
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
1=\left(x-2\right)\left(x-2\right)
চলক x, 0,1,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ x\left(x-2\right)\left(x-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{3}-3x^{2}+2x,x\left(x-1\right) ৰ সাধাৰণ বিভাজক৷
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} লাভ কৰিবৰ বাবে x-2 আৰু x-2 পুৰণ কৰক৷
1=x^{2}-4x+4
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4=1
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x^{2}-4x+4-1=0
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
x^{2}-4x+3=0
3 লাভ কৰিবলৈ 4-ৰ পৰা 1 বিয়োগ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
এই সমীকৰণটো এটা মান্য ৰূপত আছে: ax^{2}+bx+c=0. কুৱাড্ৰেটিক সূত্ৰ \frac{-b±\sqrt{b^{2}-4ac}}{2a}-ত a-ৰ বাবে 1, b-ৰ বাবে -4, c-ৰ বাবে 3 চাবষ্টিটিউট৷
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
বৰ্গ -4৷
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
-4 বাৰ 3 পুৰণ কৰক৷
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
-12 লৈ 16 যোগ কৰক৷
x=\frac{-\left(-4\right)±2}{2}
4-ৰ বৰ্গমূল লওক৷
x=\frac{4±2}{2}
-4ৰ বিপৰীত হৈছে 4৷
x=\frac{6}{2}
এতিয়া ± যোগ হ’লে সমীকৰণ x=\frac{4±2}{2} সমাধান কৰক৷ 2 লৈ 4 যোগ কৰক৷
x=3
2-ৰ দ্বাৰা 6 হৰণ কৰক৷
x=\frac{2}{2}
এতিয়া ± বিয়োগ হ’লে সমীকৰণ x=\frac{4±2}{2} সমাধান কৰক৷ 4-ৰ পৰা 2 বিয়োগ কৰক৷
x=1
2-ৰ দ্বাৰা 2 হৰণ কৰক৷
x=3 x=1
সমীকৰণটো এতিয়া সমাধান হৈছে৷
x=3
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
1=\left(x-2\right)\left(x-2\right)
চলক x, 0,1,2ৰ কোনো এটা মানৰ সৈতে সমান হ’ব নোৱাৰে, যিহেতু শূন্যৰে হৰণ কৰাটো নিৰ্ধাৰণ কৰা হোৱা নাই৷ x\left(x-2\right)\left(x-1\right)ৰ দ্বাৰা সমীকৰণৰ দুয়োটা প্ৰান্ত পূৰণ কৰক, কমেও x^{3}-3x^{2}+2x,x\left(x-1\right) ৰ সাধাৰণ বিভাজক৷
1=\left(x-2\right)^{2}
\left(x-2\right)^{2} লাভ কৰিবৰ বাবে x-2 আৰু x-2 পুৰণ কৰক৷
1=x^{2}-4x+4
\left(x-2\right)^{2} বিস্তাৰ কৰিবলৈ দ্বিপদীয় উপপাদ্য \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ব্যৱহাৰ কৰক৷
x^{2}-4x+4=1
কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
\left(x-2\right)^{2}=1
উৎপাদক x^{2}-4x+4 । সাধাৰণতে, যেতিয়া x^{2}+bx+c এটা পূৰ্ণ বৰ্গ হয় তেতিয়া ইয়াক সদায়ে \left(x+\frac{b}{2}\right)^{2} হিচাপে উৎপাদক বিশ্লেষণ কৰিব পৰা যায় ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
সমীকৰণৰ দুয়োটা দিশৰ বৰ্গমূল লওক৷
x-2=1 x-2=-1
সৰলীকৰণ৷
x=3 x=1
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
x=3
চলক x, 1ৰ সৈতে সমান হ’ব নোৱাৰে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}