মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+\frac{2}{3}y=-12,-6x-\frac{1}{3}y=20
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+\frac{2}{3}y=-12
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-\frac{2}{3}y-12
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{2y}{3} বিয়োগ কৰক৷
x=\frac{1}{5}\left(-\frac{2}{3}y-12\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{15}y-\frac{12}{5}
\frac{1}{5} বাৰ -\frac{2y}{3}-12 পুৰণ কৰক৷
-6\left(-\frac{2}{15}y-\frac{12}{5}\right)-\frac{1}{3}y=20
অন্য সমীকৰণত x-ৰ বাবে -\frac{2y}{15}-\frac{12}{5} স্থানাপন কৰক, -6x-\frac{1}{3}y=20৷
\frac{4}{5}y+\frac{72}{5}-\frac{1}{3}y=20
-6 বাৰ -\frac{2y}{15}-\frac{12}{5} পুৰণ কৰক৷
\frac{7}{15}y+\frac{72}{5}=20
-\frac{y}{3} লৈ \frac{4y}{5} যোগ কৰক৷
\frac{7}{15}y=\frac{28}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{72}{5} বিয়োগ কৰক৷
y=12
\frac{7}{15}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{2}{15}\times 12-\frac{12}{5}
x=-\frac{2}{15}y-\frac{12}{5}-ত y-ৰ বাবে 12-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-8-12}{5}
-\frac{2}{15} বাৰ 12 পুৰণ কৰক৷
x=-4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{8}{5} লৈ -\frac{12}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-4,y=12
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+\frac{2}{3}y=-12,-6x-\frac{1}{3}y=20
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\20\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-12\\20\end{matrix}\right)
\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-12\\20\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&\frac{2}{3}\\-6&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-12\\20\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{3}}{5\left(-\frac{1}{3}\right)-\frac{2}{3}\left(-6\right)}&-\frac{\frac{2}{3}}{5\left(-\frac{1}{3}\right)-\frac{2}{3}\left(-6\right)}\\-\frac{-6}{5\left(-\frac{1}{3}\right)-\frac{2}{3}\left(-6\right)}&\frac{5}{5\left(-\frac{1}{3}\right)-\frac{2}{3}\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-12\\20\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&-\frac{2}{7}\\\frac{18}{7}&\frac{15}{7}\end{matrix}\right)\left(\begin{matrix}-12\\20\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\left(-12\right)-\frac{2}{7}\times 20\\\frac{18}{7}\left(-12\right)+\frac{15}{7}\times 20\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\12\end{matrix}\right)
গণনা কৰক৷
x=-4,y=12
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+\frac{2}{3}y=-12,-6x-\frac{1}{3}y=20
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-6\times 5x-6\times \frac{2}{3}y=-6\left(-12\right),5\left(-6\right)x+5\left(-\frac{1}{3}\right)y=5\times 20
5x আৰু -6x সমান কৰিবৰ বাবে, -6-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
-30x-4y=72,-30x-\frac{5}{3}y=100
সৰলীকৰণ৷
-30x+30x-4y+\frac{5}{3}y=72-100
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -30x-4y=72-ৰ পৰা -30x-\frac{5}{3}y=100 হৰণ কৰক৷
-4y+\frac{5}{3}y=72-100
30x লৈ -30x যোগ কৰক৷ চৰ্তাৱলী -30x আৰু 30x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{7}{3}y=72-100
\frac{5y}{3} লৈ -4y যোগ কৰক৷
-\frac{7}{3}y=-28
-100 লৈ 72 যোগ কৰক৷
y=12
-\frac{7}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
-6x-\frac{1}{3}\times 12=20
-6x-\frac{1}{3}y=20-ত y-ৰ বাবে 12-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-6x-4=20
-\frac{1}{3} বাৰ 12 পুৰণ কৰক৷
-6x=24
সমীকৰণৰ দুয়োটা দিশতে 4 যোগ কৰক৷
x=-4
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-4,y=12
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷