মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

10x-10y=-10,-10x+8y=12
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
10x-10y=-10
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
10x=10y-10
সমীকৰণৰ দুয়োটা দিশতে 10y যোগ কৰক৷
x=\frac{1}{10}\left(10y-10\right)
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=y-1
\frac{1}{10} বাৰ -10+10y পুৰণ কৰক৷
-10\left(y-1\right)+8y=12
অন্য সমীকৰণত x-ৰ বাবে y-1 স্থানাপন কৰক, -10x+8y=12৷
-10y+10+8y=12
-10 বাৰ y-1 পুৰণ কৰক৷
-2y+10=12
8y লৈ -10y যোগ কৰক৷
-2y=2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
y=-1
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-1-1
x=y-1-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-2
-1 লৈ -1 যোগ কৰক৷
x=-2,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
10x-10y=-10,-10x+8y=12
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&-10\\-10&8\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{10\times 8-\left(-10\left(-10\right)\right)}&-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}\\-\frac{-10}{10\times 8-\left(-10\left(-10\right)\right)}&\frac{10}{10\times 8-\left(-10\left(-10\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}&-\frac{1}{2}\\-\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{5}\left(-10\right)-\frac{1}{2}\times 12\\-\frac{1}{2}\left(-10\right)-\frac{1}{2}\times 12\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
গণনা কৰক৷
x=-2,y=-1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
10x-10y=-10,-10x+8y=12
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-10\times 10x-10\left(-10\right)y=-10\left(-10\right),10\left(-10\right)x+10\times 8y=10\times 12
10x আৰু -10x সমান কৰিবৰ বাবে, -10-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 10-ৰ দ্বাৰা পুৰণ কৰক৷
-100x+100y=100,-100x+80y=120
সৰলীকৰণ৷
-100x+100x+100y-80y=100-120
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -100x+100y=100-ৰ পৰা -100x+80y=120 হৰণ কৰক৷
100y-80y=100-120
100x লৈ -100x যোগ কৰক৷ চৰ্তাৱলী -100x আৰু 100x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
20y=100-120
-80y লৈ 100y যোগ কৰক৷
20y=-20
-120 লৈ 100 যোগ কৰক৷
y=-1
20-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-10x+8\left(-1\right)=12
-10x+8y=12-ত y-ৰ বাবে -1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-10x-8=12
8 বাৰ -1 পুৰণ কৰক৷
-10x=20
সমীকৰণৰ দুয়োটা দিশতে 8 যোগ কৰক৷
x=-2
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2,y=-1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷