মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-9x=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 9x বিয়োগ কৰক৷
y-x=7
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
y-9x=6,y-x=7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-9x=6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=9x+6
সমীকৰণৰ দুয়োটা দিশতে 9x যোগ কৰক৷
9x+6-x=7
অন্য সমীকৰণত y-ৰ বাবে 9x+6 স্থানাপন কৰক, y-x=7৷
8x+6=7
-x লৈ 9x যোগ কৰক৷
8x=1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=\frac{1}{8}
8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=9\times \frac{1}{8}+6
y=9x+6-ত x-ৰ বাবে \frac{1}{8}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{9}{8}+6
9 বাৰ \frac{1}{8} পুৰণ কৰক৷
y=\frac{57}{8}
\frac{9}{8} লৈ 6 যোগ কৰক৷
y=\frac{57}{8},x=\frac{1}{8}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-9x=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 9x বিয়োগ কৰক৷
y-x=7
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
y-9x=6,y-x=7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-9\\1&-1\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-9\right)}&-\frac{-9}{-1-\left(-9\right)}\\-\frac{1}{-1-\left(-9\right)}&\frac{1}{-1-\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{9}{8}\\-\frac{1}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 6+\frac{9}{8}\times 7\\-\frac{1}{8}\times 6+\frac{1}{8}\times 7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{57}{8}\\\frac{1}{8}\end{matrix}\right)
গণনা কৰক৷
y=\frac{57}{8},x=\frac{1}{8}
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-9x=6
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 9x বিয়োগ কৰক৷
y-x=7
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
y-9x=6,y-x=7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y-9x+x=6-7
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y-9x=6-ৰ পৰা y-x=7 হৰণ কৰক৷
-9x+x=6-7
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-8x=6-7
x লৈ -9x যোগ কৰক৷
-8x=-1
-7 লৈ 6 যোগ কৰক৷
x=\frac{1}{8}
-8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y-\frac{1}{8}=7
y-x=7-ত x-ৰ বাবে \frac{1}{8}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{57}{8}
সমীকৰণৰ দুয়োটা দিশতে \frac{1}{8} যোগ কৰক৷
y=\frac{57}{8},x=\frac{1}{8}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷