y, x-ৰ বাবে সমাধান কৰক
x = \frac{13}{7} = 1\frac{6}{7} \approx 1.857142857
y = \frac{27}{7} = 3\frac{6}{7} \approx 3.857142857
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y-8x=-11
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
y-x=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
y-8x=-11,y-x=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-8x=-11
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=8x-11
সমীকৰণৰ দুয়োটা দিশতে 8x যোগ কৰক৷
8x-11-x=2
অন্য সমীকৰণত y-ৰ বাবে 8x-11 স্থানাপন কৰক, y-x=2৷
7x-11=2
-x লৈ 8x যোগ কৰক৷
7x=13
সমীকৰণৰ দুয়োটা দিশতে 11 যোগ কৰক৷
x=\frac{13}{7}
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=8\times \frac{13}{7}-11
y=8x-11-ত x-ৰ বাবে \frac{13}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{104}{7}-11
8 বাৰ \frac{13}{7} পুৰণ কৰক৷
y=\frac{27}{7}
\frac{104}{7} লৈ -11 যোগ কৰক৷
y=\frac{27}{7},x=\frac{13}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-8x=-11
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
y-x=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
y-8x=-11,y-x=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-11\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-11\\2\end{matrix}\right)
\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-11\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\1&-1\end{matrix}\right))\left(\begin{matrix}-11\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-8\right)}&-\frac{-8}{-1-\left(-8\right)}\\-\frac{1}{-1-\left(-8\right)}&\frac{1}{-1-\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-11\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{8}{7}\\-\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-11\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\left(-11\right)+\frac{8}{7}\times 2\\-\frac{1}{7}\left(-11\right)+\frac{1}{7}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{27}{7}\\\frac{13}{7}\end{matrix}\right)
গণনা কৰক৷
y=\frac{27}{7},x=\frac{13}{7}
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-8x=-11
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
y-x=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
y-8x=-11,y-x=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y-8x+x=-11-2
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y-8x=-11-ৰ পৰা y-x=2 হৰণ কৰক৷
-8x+x=-11-2
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-7x=-11-2
x লৈ -8x যোগ কৰক৷
-7x=-13
-2 লৈ -11 যোগ কৰক৷
x=\frac{13}{7}
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y-\frac{13}{7}=2
y-x=2-ত x-ৰ বাবে \frac{13}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=\frac{27}{7}
সমীকৰণৰ দুয়োটা দিশতে \frac{13}{7} যোগ কৰক৷
y=\frac{27}{7},x=\frac{13}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}