মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-6x=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 6x বিয়োগ কৰক৷
y-8x=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
y-6x=4,y-8x=2
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-6x=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=6x+4
সমীকৰণৰ দুয়োটা দিশতে 6x যোগ কৰক৷
6x+4-8x=2
অন্য সমীকৰণত y-ৰ বাবে 6x+4 স্থানাপন কৰক, y-8x=2৷
-2x+4=2
-8x লৈ 6x যোগ কৰক৷
-2x=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
x=1
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=6+4
y=6x+4-ত x-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=10
6 লৈ 4 যোগ কৰক৷
y=10,x=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-6x=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 6x বিয়োগ কৰক৷
y-8x=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
y-6x=4,y-8x=2
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right))\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-6\\1&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-6\right)}&-\frac{-6}{-8-\left(-6\right)}\\-\frac{1}{-8-\left(-6\right)}&\frac{1}{-8-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4&-3\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\times 4-3\times 2\\\frac{1}{2}\times 4-\frac{1}{2}\times 2\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}10\\1\end{matrix}\right)
গণনা কৰক৷
y=10,x=1
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-6x=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 6x বিয়োগ কৰক৷
y-8x=2
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 8x বিয়োগ কৰক৷
y-6x=4,y-8x=2
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y-6x+8x=4-2
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y-6x=4-ৰ পৰা y-8x=2 হৰণ কৰক৷
-6x+8x=4-2
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
2x=4-2
8x লৈ -6x যোগ কৰক৷
2x=2
-2 লৈ 4 যোগ কৰক৷
x=1
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y-8=2
y-8x=2-ত x-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=10
সমীকৰণৰ দুয়োটা দিশতে 8 যোগ কৰক৷
y=10,x=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷