মুখ্য সমললৈ এৰি যাওক
y, x-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y-4x=-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
y+x=18
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে x যোগ কৰক।
y-4x=-2,y+x=18
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y-4x=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=4x-2
সমীকৰণৰ দুয়োটা দিশতে 4x যোগ কৰক৷
4x-2+x=18
অন্য সমীকৰণত y-ৰ বাবে 4x-2 স্থানাপন কৰক, y+x=18৷
5x-2=18
x লৈ 4x যোগ কৰক৷
5x=20
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
x=4
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=4\times 4-2
y=4x-2-ত x-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=16-2
4 বাৰ 4 পুৰণ কৰক৷
y=14
16 লৈ -2 যোগ কৰক৷
y=14,x=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-4x=-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
y+x=18
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে x যোগ কৰক।
y-4x=-2,y+x=18
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-2\\18\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
\left(\begin{matrix}1&-4\\1&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&1\end{matrix}\right))\left(\begin{matrix}-2\\18\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-4\right)}&-\frac{-4}{1-\left(-4\right)}\\-\frac{1}{1-\left(-4\right)}&\frac{1}{1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{4}{5}\\-\frac{1}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-2\\18\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-2\right)+\frac{4}{5}\times 18\\-\frac{1}{5}\left(-2\right)+\frac{1}{5}\times 18\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}14\\4\end{matrix}\right)
গণনা কৰক৷
y=14,x=4
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-4x=-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
y+x=18
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে x যোগ কৰক।
y-4x=-2,y+x=18
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
y-y-4x-x=-2-18
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি y-4x=-2-ৰ পৰা y+x=18 হৰণ কৰক৷
-4x-x=-2-18
-y লৈ y যোগ কৰক৷ চৰ্তাৱলী y আৰু -y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-5x=-2-18
-x লৈ -4x যোগ কৰক৷
-5x=-20
-18 লৈ -2 যোগ কৰক৷
x=4
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y+4=18
y+x=18-ত x-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=14
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4 বিয়োগ কৰক৷
y=14,x=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷