y, x-ৰ বাবে সমাধান কৰক
x=7
y=-1
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y+2x=13
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
y+2x=13,8y+4x=20
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y+2x=13
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y=-2x+13
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2x বিয়োগ কৰক৷
8\left(-2x+13\right)+4x=20
অন্য সমীকৰণত y-ৰ বাবে -2x+13 স্থানাপন কৰক, 8y+4x=20৷
-16x+104+4x=20
8 বাৰ -2x+13 পুৰণ কৰক৷
-12x+104=20
4x লৈ -16x যোগ কৰক৷
-12x=-84
সমীকৰণৰ দুয়োটা দিশৰ পৰা 104 বিয়োগ কৰক৷
x=7
-12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-2\times 7+13
y=-2x+13-ত x-ৰ বাবে 7-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-14+13
-2 বাৰ 7 পুৰণ কৰক৷
y=-1
-14 লৈ 13 যোগ কৰক৷
y=-1,x=7
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y+2x=13
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
y+2x=13,8y+4x=20
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&2\\8&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}13\\20\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}1&2\\8&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}13\\20\end{matrix}\right)
\left(\begin{matrix}1&2\\8&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}13\\20\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\8&4\end{matrix}\right))\left(\begin{matrix}13\\20\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4-2\times 8}&-\frac{2}{4-2\times 8}\\-\frac{8}{4-2\times 8}&\frac{1}{4-2\times 8}\end{matrix}\right)\left(\begin{matrix}13\\20\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}13\\20\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 13+\frac{1}{6}\times 20\\\frac{2}{3}\times 13-\frac{1}{12}\times 20\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
গণনা কৰক৷
y=-1,x=7
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y+2x=13
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 2x যোগ কৰক।
y+2x=13,8y+4x=20
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
8y+8\times 2x=8\times 13,8y+4x=20
y আৰু 8y সমান কৰিবৰ বাবে, 8-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
8y+16x=104,8y+4x=20
সৰলীকৰণ৷
8y-8y+16x-4x=104-20
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 8y+16x=104-ৰ পৰা 8y+4x=20 হৰণ কৰক৷
16x-4x=104-20
-8y লৈ 8y যোগ কৰক৷ চৰ্তাৱলী 8y আৰু -8y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
12x=104-20
-4x লৈ 16x যোগ কৰক৷
12x=84
-20 লৈ 104 যোগ কৰক৷
x=7
12-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
8y+4\times 7=20
8y+4x=20-ত x-ৰ বাবে 7-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
8y+28=20
4 বাৰ 7 পুৰণ কৰক৷
8y=-8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 28 বিয়োগ কৰক৷
y=-1
8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-1,x=7
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}