y, x-ৰ বাবে সমাধান কৰক
x=0
y=-3
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y-\frac{x}{3}=-3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{x}{3} বিয়োগ কৰক৷
3y-x=-9
3-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
3y-x=-9,y+4x=-3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
3y-x=-9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
3y=x-9
সমীকৰণৰ দুয়োটা দিশতে x যোগ কৰক৷
y=\frac{1}{3}\left(x-9\right)
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=\frac{1}{3}x-3
\frac{1}{3} বাৰ x-9 পুৰণ কৰক৷
\frac{1}{3}x-3+4x=-3
অন্য সমীকৰণত y-ৰ বাবে \frac{x}{3}-3 স্থানাপন কৰক, y+4x=-3৷
\frac{13}{3}x-3=-3
4x লৈ \frac{x}{3} যোগ কৰক৷
\frac{13}{3}x=0
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
x=0
\frac{13}{3}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
y=-3
y=\frac{1}{3}x-3-ত x-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-3,x=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y-\frac{x}{3}=-3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{x}{3} বিয়োগ কৰক৷
3y-x=-9
3-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
3y-x=-9,y+4x=-3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
\left(\begin{matrix}3&-1\\1&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&4\end{matrix}\right))\left(\begin{matrix}-9\\-3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-1\right)}&-\frac{-1}{3\times 4-\left(-1\right)}\\-\frac{1}{3\times 4-\left(-1\right)}&\frac{3}{3\times 4-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&\frac{1}{13}\\-\frac{1}{13}&\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}-9\\-3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}\left(-9\right)+\frac{1}{13}\left(-3\right)\\-\frac{1}{13}\left(-9\right)+\frac{3}{13}\left(-3\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\0\end{matrix}\right)
গণনা কৰক৷
y=-3,x=0
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y-\frac{x}{3}=-3
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা \frac{x}{3} বিয়োগ কৰক৷
3y-x=-9
3-ৰ দ্বাৰা সমীকৰণৰ দুয়োটা দিশক পুৰণ কৰক৷
3y-x=-9,y+4x=-3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3y-x=-9,3y+3\times 4x=3\left(-3\right)
3y আৰু y সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 3-ৰ দ্বাৰা পুৰণ কৰক৷
3y-x=-9,3y+12x=-9
সৰলীকৰণ৷
3y-3y-x-12x=-9+9
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 3y-x=-9-ৰ পৰা 3y+12x=-9 হৰণ কৰক৷
-x-12x=-9+9
-3y লৈ 3y যোগ কৰক৷ চৰ্তাৱলী 3y আৰু -3y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-13x=-9+9
-12x লৈ -x যোগ কৰক৷
-13x=0
9 লৈ -9 যোগ কৰক৷
x=0
-13-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-3
y+4x=-3-ত x-ৰ বাবে 0-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-3,x=0
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}