y, x-ৰ বাবে সমাধান কৰক
x = \frac{13}{7} = 1\frac{6}{7} \approx 1.857142857
y = -\frac{10}{7} = -1\frac{3}{7} \approx -1.428571429
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
y+4x-6=0,-y+3x=7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
y+4x-6=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে y পৃথক কৰি yৰ বাবে ইয়াক সমাধান কৰক৷
y+4x=6
সমীকৰণৰ দুয়োটা দিশতে 6 যোগ কৰক৷
y=-4x+6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 4x বিয়োগ কৰক৷
-\left(-4x+6\right)+3x=7
অন্য সমীকৰণত y-ৰ বাবে -4x+6 স্থানাপন কৰক, -y+3x=7৷
4x-6+3x=7
-1 বাৰ -4x+6 পুৰণ কৰক৷
7x-6=7
3x লৈ 4x যোগ কৰক৷
7x=13
সমীকৰণৰ দুয়োটা দিশতে 6 যোগ কৰক৷
x=\frac{13}{7}
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-4\times \frac{13}{7}+6
y=-4x+6-ত x-ৰ বাবে \frac{13}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
y=-\frac{52}{7}+6
-4 বাৰ \frac{13}{7} পুৰণ কৰক৷
y=-\frac{10}{7}
-\frac{52}{7} লৈ 6 যোগ কৰক৷
y=-\frac{10}{7},x=\frac{13}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y+4x-6=0,-y+3x=7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&4\\-1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\\7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&4\\-1&3\end{matrix}\right))\left(\begin{matrix}1&4\\-1&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&3\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
\left(\begin{matrix}1&4\\-1&3\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&3\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&3\end{matrix}\right))\left(\begin{matrix}6\\7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-4\left(-1\right)}&-\frac{4}{3-4\left(-1\right)}\\-\frac{-1}{3-4\left(-1\right)}&\frac{1}{3-4\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&-\frac{4}{7}\\\frac{1}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}6\\7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\times 6-\frac{4}{7}\times 7\\\frac{1}{7}\times 6+\frac{1}{7}\times 7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{7}\\\frac{13}{7}\end{matrix}\right)
গণনা কৰক৷
y=-\frac{10}{7},x=\frac{13}{7}
মেট্ৰিক্স উপাদান y আৰু x নিষ্কাষিত কৰক৷
y+4x-6=0,-y+3x=7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-y-4x-\left(-6\right)=0,-y+3x=7
y আৰু -y সমান কৰিবৰ বাবে, -1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
-y-4x+6=0,-y+3x=7
সৰলীকৰণ৷
-y+y-4x-3x+6=-7
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -y-4x+6=0-ৰ পৰা -y+3x=7 হৰণ কৰক৷
-4x-3x+6=-7
y লৈ -y যোগ কৰক৷ চৰ্তাৱলী -y আৰু y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-7x+6=-7
-3x লৈ -4x যোগ কৰক৷
-7x=-13
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=\frac{13}{7}
-7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-y+3\times \frac{13}{7}=7
-y+3x=7-ত x-ৰ বাবে \frac{13}{7}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-y+\frac{39}{7}=7
3 বাৰ \frac{13}{7} পুৰণ কৰক৷
-y=\frac{10}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{39}{7} বিয়োগ কৰক৷
y=-\frac{10}{7}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
y=-\frac{10}{7},x=\frac{13}{7}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}