মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-8y=10,-5x+10y=10
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-8y=10
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=8y+10
সমীকৰণৰ দুয়োটা দিশতে 8y যোগ কৰক৷
-5\left(8y+10\right)+10y=10
অন্য সমীকৰণত x-ৰ বাবে 8y+10 স্থানাপন কৰক, -5x+10y=10৷
-40y-50+10y=10
-5 বাৰ 8y+10 পুৰণ কৰক৷
-30y-50=10
10y লৈ -40y যোগ কৰক৷
-30y=60
সমীকৰণৰ দুয়োটা দিশতে 50 যোগ কৰক৷
y=-2
-30-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=8\left(-2\right)+10
x=8y+10-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-16+10
8 বাৰ -2 পুৰণ কৰক৷
x=-6
-16 লৈ 10 যোগ কৰক৷
x=-6,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-8y=10,-5x+10y=10
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\10\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right))\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right))\left(\begin{matrix}10\\10\end{matrix}\right)
\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right))\left(\begin{matrix}10\\10\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-8\\-5&10\end{matrix}\right))\left(\begin{matrix}10\\10\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10-\left(-8\left(-5\right)\right)}&-\frac{-8}{10-\left(-8\left(-5\right)\right)}\\-\frac{-5}{10-\left(-8\left(-5\right)\right)}&\frac{1}{10-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}10\\10\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{4}{15}\\-\frac{1}{6}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}10\\10\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 10-\frac{4}{15}\times 10\\-\frac{1}{6}\times 10-\frac{1}{30}\times 10\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-2\end{matrix}\right)
গণনা কৰক৷
x=-6,y=-2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-8y=10,-5x+10y=10
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-5x-5\left(-8\right)y=-5\times 10,-5x+10y=10
x আৰু -5x সমান কৰিবৰ বাবে, -5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
-5x+40y=-50,-5x+10y=10
সৰলীকৰণ৷
-5x+5x+40y-10y=-50-10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -5x+40y=-50-ৰ পৰা -5x+10y=10 হৰণ কৰক৷
40y-10y=-50-10
5x লৈ -5x যোগ কৰক৷ চৰ্তাৱলী -5x আৰু 5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
30y=-50-10
-10y লৈ 40y যোগ কৰক৷
30y=-60
-10 লৈ -50 যোগ কৰক৷
y=-2
30-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-5x+10\left(-2\right)=10
-5x+10y=10-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-5x-20=10
10 বাৰ -2 পুৰণ কৰক৷
-5x=30
সমীকৰণৰ দুয়োটা দিশতে 20 যোগ কৰক৷
x=-6
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-6,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷