মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x-y=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x-y=4,4x-y=22
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x-y=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=y+4
সমীকৰণৰ দুয়োটা দিশতে y যোগ কৰক৷
4\left(y+4\right)-y=22
অন্য সমীকৰণত x-ৰ বাবে y+4 স্থানাপন কৰক, 4x-y=22৷
4y+16-y=22
4 বাৰ y+4 পুৰণ কৰক৷
3y+16=22
-y লৈ 4y যোগ কৰক৷
3y=6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 16 বিয়োগ কৰক৷
y=2
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=2+4
x=y+4-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=6
2 লৈ 4 যোগ কৰক৷
x=6,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x-y=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x-y=4,4x-y=22
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\22\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\4&-1\end{matrix}\right))\left(\begin{matrix}4\\22\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-1-\left(-4\right)}&-\frac{-1}{-1-\left(-4\right)}\\-\frac{4}{-1-\left(-4\right)}&\frac{1}{-1-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}4\\22\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{1}{3}\\-\frac{4}{3}&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}4\\22\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 4+\frac{1}{3}\times 22\\-\frac{4}{3}\times 4+\frac{1}{3}\times 22\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
গণনা কৰক৷
x=6,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x-y=4
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x-y=4,4x-y=22
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
x-4x-y+y=4-22
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি x-y=4-ৰ পৰা 4x-y=22 হৰণ কৰক৷
x-4x=4-22
y লৈ -y যোগ কৰক৷ চৰ্তাৱলী -y আৰু y সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-3x=4-22
-4x লৈ x যোগ কৰক৷
-3x=-18
-22 লৈ 4 যোগ কৰক৷
x=6
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4\times 6-y=22
4x-y=22-ত x-ৰ বাবে 6-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি y-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
24-y=22
4 বাৰ 6 পুৰণ কৰক৷
-y=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 24 বিয়োগ কৰক৷
y=2
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=6,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷