x, y-ৰ বাবে সমাধান কৰক
x=1605
y=-1105
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x+y=500,25x+35y=1450
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=500
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+500
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
25\left(-y+500\right)+35y=1450
অন্য সমীকৰণত x-ৰ বাবে -y+500 স্থানাপন কৰক, 25x+35y=1450৷
-25y+12500+35y=1450
25 বাৰ -y+500 পুৰণ কৰক৷
10y+12500=1450
35y লৈ -25y যোগ কৰক৷
10y=-11050
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12500 বিয়োগ কৰক৷
y=-1105
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\left(-1105\right)+500
x=-y+500-ত y-ৰ বাবে -1105-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=1105+500
-1 বাৰ -1105 পুৰণ কৰক৷
x=1605
1105 লৈ 500 যোগ কৰক৷
x=1605,y=-1105
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=500,25x+35y=1450
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\1450\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}1&1\\25&35\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
\left(\begin{matrix}1&1\\25&35\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\25&35\end{matrix}\right))\left(\begin{matrix}500\\1450\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{35-25}&-\frac{1}{35-25}\\-\frac{25}{35-25}&\frac{1}{35-25}\end{matrix}\right)\left(\begin{matrix}500\\1450\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}&-\frac{1}{10}\\-\frac{5}{2}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}500\\1450\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{2}\times 500-\frac{1}{10}\times 1450\\-\frac{5}{2}\times 500+\frac{1}{10}\times 1450\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1605\\-1105\end{matrix}\right)
গণনা কৰক৷
x=1605,y=-1105
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=500,25x+35y=1450
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
25x+25y=25\times 500,25x+35y=1450
x আৰু 25x সমান কৰিবৰ বাবে, 25-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
25x+25y=12500,25x+35y=1450
সৰলীকৰণ৷
25x-25x+25y-35y=12500-1450
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 25x+25y=12500-ৰ পৰা 25x+35y=1450 হৰণ কৰক৷
25y-35y=12500-1450
-25x লৈ 25x যোগ কৰক৷ চৰ্তাৱলী 25x আৰু -25x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-10y=12500-1450
-35y লৈ 25y যোগ কৰক৷
-10y=11050
-1450 লৈ 12500 যোগ কৰক৷
y=-1105
-10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
25x+35\left(-1105\right)=1450
25x+35y=1450-ত y-ৰ বাবে -1105-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
25x-38675=1450
35 বাৰ -1105 পুৰণ কৰক৷
25x=40125
সমীকৰণৰ দুয়োটা দিশতে 38675 যোগ কৰক৷
x=1605
25-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1605,y=-1105
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}