মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=17,2.6x+3.5y=55
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=17
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+17
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
2.6\left(-y+17\right)+3.5y=55
অন্য সমীকৰণত x-ৰ বাবে -y+17 স্থানাপন কৰক, 2.6x+3.5y=55৷
-2.6y+44.2+3.5y=55
2.6 বাৰ -y+17 পুৰণ কৰক৷
0.9y+44.2=55
\frac{7y}{2} লৈ -\frac{13y}{5} যোগ কৰক৷
0.9y=10.8
সমীকৰণৰ দুয়োটা দিশৰ পৰা 44.2 বিয়োগ কৰক৷
y=12
0.9-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-12+17
x=-y+17-ত y-ৰ বাবে 12-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=5
-12 লৈ 17 যোগ কৰক৷
x=5,y=12
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=17,2.6x+3.5y=55
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\55\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2.6&3.5\end{matrix}\right))\left(\begin{matrix}17\\55\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3.5}{3.5-2.6}&-\frac{1}{3.5-2.6}\\-\frac{2.6}{3.5-2.6}&\frac{1}{3.5-2.6}\end{matrix}\right)\left(\begin{matrix}17\\55\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{9}&-\frac{10}{9}\\-\frac{26}{9}&\frac{10}{9}\end{matrix}\right)\left(\begin{matrix}17\\55\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{9}\times 17-\frac{10}{9}\times 55\\-\frac{26}{9}\times 17+\frac{10}{9}\times 55\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
গণনা কৰক৷
x=5,y=12
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=17,2.6x+3.5y=55
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2.6x+2.6y=2.6\times 17,2.6x+3.5y=55
x আৰু \frac{13x}{5} সমান কৰিবৰ বাবে, 2.6-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
2.6x+2.6y=44.2,2.6x+3.5y=55
সৰলীকৰণ৷
2.6x-2.6x+2.6y-3.5y=44.2-55
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2.6x+2.6y=44.2-ৰ পৰা 2.6x+3.5y=55 হৰণ কৰক৷
2.6y-3.5y=44.2-55
-\frac{13x}{5} লৈ \frac{13x}{5} যোগ কৰক৷ চৰ্তাৱলী \frac{13x}{5} আৰু -\frac{13x}{5} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-0.9y=44.2-55
-\frac{7y}{2} লৈ \frac{13y}{5} যোগ কৰক৷
-0.9y=-10.8
-55 লৈ 44.2 যোগ কৰক৷
y=12
-0.9-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
2.6x+3.5\times 12=55
2.6x+3.5y=55-ত y-ৰ বাবে 12-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2.6x+42=55
3.5 বাৰ 12 পুৰণ কৰক৷
2.6x=13
সমীকৰণৰ দুয়োটা দিশৰ পৰা 42 বিয়োগ কৰক৷
x=5
2.6-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=5,y=12
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷