মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+y=1,5x+10y=10
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+y=1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-y+1
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
5\left(-y+1\right)+10y=10
অন্য সমীকৰণত x-ৰ বাবে -y+1 স্থানাপন কৰক, 5x+10y=10৷
-5y+5+10y=10
5 বাৰ -y+1 পুৰণ কৰক৷
5y+5=10
10y লৈ -5y যোগ কৰক৷
5y=5
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
y=1
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-1+1
x=-y+1-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=0
-1 লৈ 1 যোগ কৰক৷
x=0,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+y=1,5x+10y=10
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\5&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\10\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}1&1\\5&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
\left(\begin{matrix}1&1\\5&10\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\5&10\end{matrix}\right))\left(\begin{matrix}1\\10\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10-5}&-\frac{1}{10-5}\\-\frac{5}{10-5}&\frac{1}{10-5}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-\frac{1}{5}\\-1&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}1\\10\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2-\frac{1}{5}\times 10\\-1+\frac{1}{5}\times 10\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
গণনা কৰক৷
x=0,y=1
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+y=1,5x+10y=10
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5x+5y=5,5x+10y=10
x আৰু 5x সমান কৰিবৰ বাবে, 5-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
5x-5x+5y-10y=5-10
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 5x+5y=5-ৰ পৰা 5x+10y=10 হৰণ কৰক৷
5y-10y=5-10
-5x লৈ 5x যোগ কৰক৷ চৰ্তাৱলী 5x আৰু -5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-5y=5-10
-10y লৈ 5y যোগ কৰক৷
-5y=-5
-10 লৈ 5 যোগ কৰক৷
y=1
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
5x+10=10
5x+10y=10-ত y-ৰ বাবে 1-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
5x=0
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x=0
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=0,y=1
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷