মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

y+4x=1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 4x যোগ কৰক।
x+3y=14,4x+y=1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+3y=14
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-3y+14
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
4\left(-3y+14\right)+y=1
অন্য সমীকৰণত x-ৰ বাবে -3y+14 স্থানাপন কৰক, 4x+y=1৷
-12y+56+y=1
4 বাৰ -3y+14 পুৰণ কৰক৷
-11y+56=1
y লৈ -12y যোগ কৰক৷
-11y=-55
সমীকৰণৰ দুয়োটা দিশৰ পৰা 56 বিয়োগ কৰক৷
y=5
-11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-3\times 5+14
x=-3y+14-ত y-ৰ বাবে 5-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-15+14
-3 বাৰ 5 পুৰণ কৰক৷
x=-1
-15 লৈ 14 যোগ কৰক৷
x=-1,y=5
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
y+4x=1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 4x যোগ কৰক।
x+3y=14,4x+y=1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}1&3\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
\left(\begin{matrix}1&3\\4&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\4&1\end{matrix}\right))\left(\begin{matrix}14\\1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3\times 4}&-\frac{3}{1-3\times 4}\\-\frac{4}{1-3\times 4}&\frac{1}{1-3\times 4}\end{matrix}\right)\left(\begin{matrix}14\\1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{3}{11}\\\frac{4}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}14\\1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\times 14+\frac{3}{11}\\\frac{4}{11}\times 14-\frac{1}{11}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\5\end{matrix}\right)
গণনা কৰক৷
x=-1,y=5
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
y+4x=1
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ উভয় কাষে 4x যোগ কৰক।
x+3y=14,4x+y=1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4x+4\times 3y=4\times 14,4x+y=1
x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
4x+12y=56,4x+y=1
সৰলীকৰণ৷
4x-4x+12y-y=56-1
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 4x+12y=56-ৰ পৰা 4x+y=1 হৰণ কৰক৷
12y-y=56-1
-4x লৈ 4x যোগ কৰক৷ চৰ্তাৱলী 4x আৰু -4x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
11y=56-1
-y লৈ 12y যোগ কৰক৷
11y=55
-1 লৈ 56 যোগ কৰক৷
y=5
11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x+5=1
4x+y=1-ত y-ৰ বাবে 5-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5 বিয়োগ কৰক৷
x=-1
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-1,y=5
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷