মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

x+2y=3,2x+5y=4
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+2y=3
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-2y+3
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2y বিয়োগ কৰক৷
2\left(-2y+3\right)+5y=4
অন্য সমীকৰণত x-ৰ বাবে -2y+3 স্থানাপন কৰক, 2x+5y=4৷
-4y+6+5y=4
2 বাৰ -2y+3 পুৰণ কৰক৷
y+6=4
5y লৈ -4y যোগ কৰক৷
y=-2
সমীকৰণৰ দুয়োটা দিশৰ পৰা 6 বিয়োগ কৰক৷
x=-2\left(-2\right)+3
x=-2y+3-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=4+3
-2 বাৰ -2 পুৰণ কৰক৷
x=7
4 লৈ 3 যোগ কৰক৷
x=7,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+2y=3,2x+5y=4
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&2\\2&5\end{matrix}\right))\left(\begin{matrix}1&2\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&5\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
\left(\begin{matrix}1&2\\2&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&5\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\2&5\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-2\times 2}&-\frac{2}{5-2\times 2}\\-\frac{2}{5-2\times 2}&\frac{1}{5-2\times 2}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-2\\-2&1\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 3-2\times 4\\-2\times 3+4\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-2\end{matrix}\right)
গণনা কৰক৷
x=7,y=-2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+2y=3,2x+5y=4
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2x+2\times 2y=2\times 3,2x+5y=4
x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 1-ৰ দ্বাৰা পুৰণ কৰক৷
2x+4y=6,2x+5y=4
সৰলীকৰণ৷
2x-2x+4y-5y=6-4
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 2x+4y=6-ৰ পৰা 2x+5y=4 হৰণ কৰক৷
4y-5y=6-4
-2x লৈ 2x যোগ কৰক৷ চৰ্তাৱলী 2x আৰু -2x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-y=6-4
-5y লৈ 4y যোগ কৰক৷
-y=2
-4 লৈ 6 যোগ কৰক৷
y=-2
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+5\left(-2\right)=4
2x+5y=4-ত y-ৰ বাবে -2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x-10=4
5 বাৰ -2 পুৰণ কৰক৷
2x=14
সমীকৰণৰ দুয়োটা দিশতে 10 যোগ কৰক৷
x=7
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=7,y=-2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷