A, B-ৰ বাবে সমাধান কৰক
A=\frac{1}{3}\approx 0.333333333
B = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
A+B+1=0,A-2B=3
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
A+B+1=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে A পৃথক কৰি Aৰ বাবে ইয়াক সমাধান কৰক৷
A+B=-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
A=-B-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা B বিয়োগ কৰক৷
-B-1-2B=3
অন্য সমীকৰণত A-ৰ বাবে -B-1 স্থানাপন কৰক, A-2B=3৷
-3B-1=3
-2B লৈ -B যোগ কৰক৷
-3B=4
সমীকৰণৰ দুয়োটা দিশতে 1 যোগ কৰক৷
B=-\frac{4}{3}
-3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
A=-\left(-\frac{4}{3}\right)-1
A=-B-1-ত B-ৰ বাবে -\frac{4}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি A-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
A=\frac{4}{3}-1
-1 বাৰ -\frac{4}{3} পুৰণ কৰক৷
A=\frac{1}{3}
\frac{4}{3} লৈ -1 যোগ কৰক৷
A=\frac{1}{3},B=-\frac{4}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
A+B+1=0,A-2B=3
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}1&1\\1&-2\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-1}&-\frac{1}{-2-1}\\-\frac{1}{-2-1}&\frac{1}{-2-1}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\left(-1\right)+\frac{1}{3}\times 3\\\frac{1}{3}\left(-1\right)-\frac{1}{3}\times 3\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\\-\frac{4}{3}\end{matrix}\right)
গণনা কৰক৷
A=\frac{1}{3},B=-\frac{4}{3}
মেট্ৰিক্স উপাদান A আৰু B নিষ্কাষিত কৰক৷
A+B+1=0,A-2B=3
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
A-A+B+2B+1=-3
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি A+B+1=0-ৰ পৰা A-2B=3 হৰণ কৰক৷
B+2B+1=-3
-A লৈ A যোগ কৰক৷ চৰ্তাৱলী A আৰু -A সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
3B+1=-3
2B লৈ B যোগ কৰক৷
3B=-4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
B=-\frac{4}{3}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
A-2\left(-\frac{4}{3}\right)=3
A-2B=3-ত B-ৰ বাবে -\frac{4}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি A-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
A+\frac{8}{3}=3
-2 বাৰ -\frac{4}{3} পুৰণ কৰক৷
A=\frac{1}{3}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{8}{3} বিয়োগ কৰক৷
A=\frac{1}{3},B=-\frac{4}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}