x, y-ৰ বাবে সমাধান কৰক
x = \frac{134}{17} = 7\frac{15}{17} \approx 7.882352941
y = -\frac{81}{17} = -4\frac{13}{17} \approx -4.764705882
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
9x+13y=9,2x+y=11
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
9x+13y=9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
9x=-13y+9
সমীকৰণৰ দুয়োটা দিশৰ পৰা 13y বিয়োগ কৰক৷
x=\frac{1}{9}\left(-13y+9\right)
9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{13}{9}y+1
\frac{1}{9} বাৰ -13y+9 পুৰণ কৰক৷
2\left(-\frac{13}{9}y+1\right)+y=11
অন্য সমীকৰণত x-ৰ বাবে -\frac{13y}{9}+1 স্থানাপন কৰক, 2x+y=11৷
-\frac{26}{9}y+2+y=11
2 বাৰ -\frac{13y}{9}+1 পুৰণ কৰক৷
-\frac{17}{9}y+2=11
y লৈ -\frac{26y}{9} যোগ কৰক৷
-\frac{17}{9}y=9
সমীকৰণৰ দুয়োটা দিশৰ পৰা 2 বিয়োগ কৰক৷
y=-\frac{81}{17}
-\frac{17}{9}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{13}{9}\left(-\frac{81}{17}\right)+1
x=-\frac{13}{9}y+1-ত y-ৰ বাবে -\frac{81}{17}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{117}{17}+1
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{13}{9} বাৰ -\frac{81}{17} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{134}{17}
\frac{117}{17} লৈ 1 যোগ কৰক৷
x=\frac{134}{17},y=-\frac{81}{17}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
9x+13y=9,2x+y=11
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}9&13\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\11\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9&13\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9\\11\end{matrix}\right)
\left(\begin{matrix}9&13\\2&1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9\\11\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&13\\2&1\end{matrix}\right))\left(\begin{matrix}9\\11\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{9-13\times 2}&-\frac{13}{9-13\times 2}\\-\frac{2}{9-13\times 2}&\frac{9}{9-13\times 2}\end{matrix}\right)\left(\begin{matrix}9\\11\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{17}&\frac{13}{17}\\\frac{2}{17}&-\frac{9}{17}\end{matrix}\right)\left(\begin{matrix}9\\11\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{17}\times 9+\frac{13}{17}\times 11\\\frac{2}{17}\times 9-\frac{9}{17}\times 11\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{134}{17}\\-\frac{81}{17}\end{matrix}\right)
গণনা কৰক৷
x=\frac{134}{17},y=-\frac{81}{17}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
9x+13y=9,2x+y=11
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 9x+2\times 13y=2\times 9,9\times 2x+9y=9\times 11
9x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 9-ৰ দ্বাৰা পুৰণ কৰক৷
18x+26y=18,18x+9y=99
সৰলীকৰণ৷
18x-18x+26y-9y=18-99
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 18x+26y=18-ৰ পৰা 18x+9y=99 হৰণ কৰক৷
26y-9y=18-99
-18x লৈ 18x যোগ কৰক৷ চৰ্তাৱলী 18x আৰু -18x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
17y=18-99
-9y লৈ 26y যোগ কৰক৷
17y=-81
-99 লৈ 18 যোগ কৰক৷
y=-\frac{81}{17}
17-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x-\frac{81}{17}=11
2x+y=11-ত y-ৰ বাবে -\frac{81}{17}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x=\frac{268}{17}
সমীকৰণৰ দুয়োটা দিশতে \frac{81}{17} যোগ কৰক৷
x=\frac{134}{17}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{134}{17},y=-\frac{81}{17}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}