x, y-ৰ বাবে সমাধান কৰক
x=400
y=20
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
x+20y=800
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+15y=700
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+20y=800,x+15y=700
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
x+20y=800
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
x=-20y+800
সমীকৰণৰ দুয়োটা দিশৰ পৰা 20y বিয়োগ কৰক৷
-20y+800+15y=700
অন্য সমীকৰণত x-ৰ বাবে -20y+800 স্থানাপন কৰক, x+15y=700৷
-5y+800=700
15y লৈ -20y যোগ কৰক৷
-5y=-100
সমীকৰণৰ দুয়োটা দিশৰ পৰা 800 বিয়োগ কৰক৷
y=20
-5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-20\times 20+800
x=-20y+800-ত y-ৰ বাবে 20-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-400+800
-20 বাৰ 20 পুৰণ কৰক৷
x=400
-400 লৈ 800 যোগ কৰক৷
x=400,y=20
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
x+20y=800
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+15y=700
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+20y=800,x+15y=700
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}800\\700\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}1&20\\1&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
\left(\begin{matrix}1&20\\1&15\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&20\\1&15\end{matrix}\right))\left(\begin{matrix}800\\700\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{15-20}&-\frac{20}{15-20}\\-\frac{1}{15-20}&\frac{1}{15-20}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3&4\\\frac{1}{5}&-\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}800\\700\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\times 800+4\times 700\\\frac{1}{5}\times 800-\frac{1}{5}\times 700\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}400\\20\end{matrix}\right)
গণনা কৰক৷
x=400,y=20
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
x+20y=800
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+15y=700
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ কাষবোৰ সাল-সলনি কৰক যাতে সকলো চলক পদ বাঁও দিশে থাকে৷
x+20y=800,x+15y=700
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
x-x+20y-15y=800-700
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি x+20y=800-ৰ পৰা x+15y=700 হৰণ কৰক৷
20y-15y=800-700
-x লৈ x যোগ কৰক৷ চৰ্তাৱলী x আৰু -x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
5y=800-700
-15y লৈ 20y যোগ কৰক৷
5y=100
-700 লৈ 800 যোগ কৰক৷
y=20
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x+15\times 20=700
x+15y=700-ত y-ৰ বাবে 20-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x+300=700
15 বাৰ 20 পুৰণ কৰক৷
x=400
সমীকৰণৰ দুয়োটা দিশৰ পৰা 300 বিয়োগ কৰক৷
x=400,y=20
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}