মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

7x+3y=4,2x+4y=8
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
7x+3y=4
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
7x=-3y+4
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{7}\left(-3y+4\right)
7-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{7}y+\frac{4}{7}
\frac{1}{7} বাৰ -3y+4 পুৰণ কৰক৷
2\left(-\frac{3}{7}y+\frac{4}{7}\right)+4y=8
অন্য সমীকৰণত x-ৰ বাবে \frac{-3y+4}{7} স্থানাপন কৰক, 2x+4y=8৷
-\frac{6}{7}y+\frac{8}{7}+4y=8
2 বাৰ \frac{-3y+4}{7} পুৰণ কৰক৷
\frac{22}{7}y+\frac{8}{7}=8
4y লৈ -\frac{6y}{7} যোগ কৰক৷
\frac{22}{7}y=\frac{48}{7}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{8}{7} বিয়োগ কৰক৷
y=\frac{24}{11}
\frac{22}{7}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{7}\times \frac{24}{11}+\frac{4}{7}
x=-\frac{3}{7}y+\frac{4}{7}-ত y-ৰ বাবে \frac{24}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{72}{77}+\frac{4}{7}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{3}{7} বাৰ \frac{24}{11} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{4}{11}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{72}{77} লৈ \frac{4}{7} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-\frac{4}{11},y=\frac{24}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
7x+3y=4,2x+4y=8
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}7&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\8\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}7&3\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
\left(\begin{matrix}7&3\\2&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\2&4\end{matrix}\right))\left(\begin{matrix}4\\8\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{7\times 4-3\times 2}&-\frac{3}{7\times 4-3\times 2}\\-\frac{2}{7\times 4-3\times 2}&\frac{7}{7\times 4-3\times 2}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}&-\frac{3}{22}\\-\frac{1}{11}&\frac{7}{22}\end{matrix}\right)\left(\begin{matrix}4\\8\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{11}\times 4-\frac{3}{22}\times 8\\-\frac{1}{11}\times 4+\frac{7}{22}\times 8\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}\\\frac{24}{11}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{4}{11},y=\frac{24}{11}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
7x+3y=4,2x+4y=8
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 7x+2\times 3y=2\times 4,7\times 2x+7\times 4y=7\times 8
7x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 7-ৰ দ্বাৰা পুৰণ কৰক৷
14x+6y=8,14x+28y=56
সৰলীকৰণ৷
14x-14x+6y-28y=8-56
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 14x+6y=8-ৰ পৰা 14x+28y=56 হৰণ কৰক৷
6y-28y=8-56
-14x লৈ 14x যোগ কৰক৷ চৰ্তাৱলী 14x আৰু -14x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-22y=8-56
-28y লৈ 6y যোগ কৰক৷
-22y=-48
-56 লৈ 8 যোগ কৰক৷
y=\frac{24}{11}
-22-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+4\times \frac{24}{11}=8
2x+4y=8-ত y-ৰ বাবে \frac{24}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+\frac{96}{11}=8
4 বাৰ \frac{24}{11} পুৰণ কৰক৷
2x=-\frac{8}{11}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{96}{11} বিয়োগ কৰক৷
x=-\frac{4}{11}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{4}{11},y=\frac{24}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷