x, y-ৰ বাবে সমাধান কৰক
x=5
y=9
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
6x-\frac{1}{3}y=27
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
6x=\frac{1}{3}y+27
সমীকৰণৰ দুয়োটা দিশতে \frac{y}{3} যোগ কৰক৷
x=\frac{1}{6}\left(\frac{1}{3}y+27\right)
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{1}{18}y+\frac{9}{2}
\frac{1}{6} বাৰ \frac{y}{3}+27 পুৰণ কৰক৷
\frac{4}{5}\left(\frac{1}{18}y+\frac{9}{2}\right)+\frac{1}{4}y=\frac{25}{4}
অন্য সমীকৰণত x-ৰ বাবে \frac{y}{18}+\frac{9}{2} স্থানাপন কৰক, \frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}৷
\frac{2}{45}y+\frac{18}{5}+\frac{1}{4}y=\frac{25}{4}
\frac{4}{5} বাৰ \frac{y}{18}+\frac{9}{2} পুৰণ কৰক৷
\frac{53}{180}y+\frac{18}{5}=\frac{25}{4}
\frac{y}{4} লৈ \frac{2y}{45} যোগ কৰক৷
\frac{53}{180}y=\frac{53}{20}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{18}{5} বিয়োগ কৰক৷
y=9
\frac{53}{180}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{1}{18}\times 9+\frac{9}{2}
x=\frac{1}{18}y+\frac{9}{2}-ত y-ৰ বাবে 9-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{1+9}{2}
\frac{1}{18} বাৰ 9 পুৰণ কৰক৷
x=5
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{1}{2} লৈ \frac{9}{2} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=5,y=9
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-\frac{1}{3}\\\frac{4}{5}&\frac{1}{4}\end{matrix}\right))\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{4}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&-\frac{-\frac{1}{3}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\\-\frac{\frac{4}{5}}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}&\frac{6}{6\times \frac{1}{4}-\left(-\frac{1}{3}\times \frac{4}{5}\right)}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}&\frac{10}{53}\\-\frac{24}{53}&\frac{180}{53}\end{matrix}\right)\left(\begin{matrix}27\\\frac{25}{4}\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{106}\times 27+\frac{10}{53}\times \frac{25}{4}\\-\frac{24}{53}\times 27+\frac{180}{53}\times \frac{25}{4}\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\9\end{matrix}\right)
গণনা কৰক৷
x=5,y=9
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
6x-\frac{1}{3}y=27,\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
\frac{4}{5}\times 6x+\frac{4}{5}\left(-\frac{1}{3}\right)y=\frac{4}{5}\times 27,6\times \frac{4}{5}x+6\times \frac{1}{4}y=6\times \frac{25}{4}
6x আৰু \frac{4x}{5} সমান কৰিবৰ বাবে, \frac{4}{5}-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 6-ৰ দ্বাৰা পুৰণ কৰক৷
\frac{24}{5}x-\frac{4}{15}y=\frac{108}{5},\frac{24}{5}x+\frac{3}{2}y=\frac{75}{2}
সৰলীকৰণ৷
\frac{24}{5}x-\frac{24}{5}x-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি \frac{24}{5}x-\frac{4}{15}y=\frac{108}{5}-ৰ পৰা \frac{24}{5}x+\frac{3}{2}y=\frac{75}{2} হৰণ কৰক৷
-\frac{4}{15}y-\frac{3}{2}y=\frac{108}{5}-\frac{75}{2}
-\frac{24x}{5} লৈ \frac{24x}{5} যোগ কৰক৷ চৰ্তাৱলী \frac{24x}{5} আৰু -\frac{24x}{5} সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{53}{30}y=\frac{108}{5}-\frac{75}{2}
-\frac{3y}{2} লৈ -\frac{4y}{15} যোগ কৰক৷
-\frac{53}{30}y=-\frac{159}{10}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{75}{2} লৈ \frac{108}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
y=9
-\frac{53}{30}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
\frac{4}{5}x+\frac{1}{4}\times 9=\frac{25}{4}
\frac{4}{5}x+\frac{1}{4}y=\frac{25}{4}-ত y-ৰ বাবে 9-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
\frac{4}{5}x+\frac{9}{4}=\frac{25}{4}
\frac{1}{4} বাৰ 9 পুৰণ কৰক৷
\frac{4}{5}x=4
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{9}{4} বিয়োগ কৰক৷
x=5
\frac{4}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=5,y=9
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}