মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

6x+3y=25.95,4x+6y=26.7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
6x+3y=25.95
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
6x=-3y+25.95
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{6}\left(-3y+25.95\right)
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}y+\frac{173}{40}
\frac{1}{6} বাৰ -3y+25.95 পুৰণ কৰক৷
4\left(-\frac{1}{2}y+\frac{173}{40}\right)+6y=26.7
অন্য সমীকৰণত x-ৰ বাবে -\frac{y}{2}+\frac{173}{40} স্থানাপন কৰক, 4x+6y=26.7৷
-2y+\frac{173}{10}+6y=26.7
4 বাৰ -\frac{y}{2}+\frac{173}{40} পুৰণ কৰক৷
4y+\frac{173}{10}=26.7
6y লৈ -2y যোগ কৰক৷
4y=\frac{47}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{173}{10} বিয়োগ কৰক৷
y=\frac{47}{20}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{2}\times \frac{47}{20}+\frac{173}{40}
x=-\frac{1}{2}y+\frac{173}{40}-ত y-ৰ বাবে \frac{47}{20}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-47+173}{40}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{2} বাৰ \frac{47}{20} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=\frac{63}{20}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{47}{40} লৈ \frac{173}{40} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=\frac{63}{20},y=\frac{47}{20}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
6x+3y=25.95,4x+6y=26.7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}6&3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}6&3\\4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
\left(\begin{matrix}6&3\\4&6\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&3\\4&6\end{matrix}\right))\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-3\times 4}&-\frac{3}{6\times 6-3\times 4}\\-\frac{4}{6\times 6-3\times 4}&\frac{6}{6\times 6-3\times 4}\end{matrix}\right)\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{8}\\-\frac{1}{6}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}25.95\\26.7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 25.95-\frac{1}{8}\times 26.7\\-\frac{1}{6}\times 25.95+\frac{1}{4}\times 26.7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{63}{20}\\\frac{47}{20}\end{matrix}\right)
গণনা কৰক৷
x=\frac{63}{20},y=\frac{47}{20}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
6x+3y=25.95,4x+6y=26.7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
4\times 6x+4\times 3y=4\times 25.95,6\times 4x+6\times 6y=6\times 26.7
6x আৰু 4x সমান কৰিবৰ বাবে, 4-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 6-ৰ দ্বাৰা পুৰণ কৰক৷
24x+12y=103.8,24x+36y=160.2
সৰলীকৰণ৷
24x-24x+12y-36y=\frac{519-801}{5}
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 24x+12y=103.8-ৰ পৰা 24x+36y=160.2 হৰণ কৰক৷
12y-36y=\frac{519-801}{5}
-24x লৈ 24x যোগ কৰক৷ চৰ্তাৱলী 24x আৰু -24x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-24y=\frac{519-801}{5}
-36y লৈ 12y যোগ কৰক৷
-24y=-56.4
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -160.2 লৈ 103.8 যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
y=\frac{47}{20}
-24-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
4x+6\times \frac{47}{20}=26.7
4x+6y=26.7-ত y-ৰ বাবে \frac{47}{20}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
4x+\frac{141}{10}=26.7
6 বাৰ \frac{47}{20} পুৰণ কৰক৷
4x=\frac{63}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{141}{10} বিয়োগ কৰক৷
x=\frac{63}{20}
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{63}{20},y=\frac{47}{20}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷