মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

6x+12y=-6,2x+5y=0
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
6x+12y=-6
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
6x=-12y-6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 12y বিয়োগ কৰক৷
x=\frac{1}{6}\left(-12y-6\right)
6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-2y-1
\frac{1}{6} বাৰ -12y-6 পুৰণ কৰক৷
2\left(-2y-1\right)+5y=0
অন্য সমীকৰণত x-ৰ বাবে -2y-1 স্থানাপন কৰক, 2x+5y=0৷
-4y-2+5y=0
2 বাৰ -2y-1 পুৰণ কৰক৷
y-2=0
5y লৈ -4y যোগ কৰক৷
y=2
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
x=-2\times 2-1
x=-2y-1-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-4-1
-2 বাৰ 2 পুৰণ কৰক৷
x=-5
-4 লৈ -1 যোগ কৰক৷
x=-5,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
6x+12y=-6,2x+5y=0
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}6&12\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\0\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}6&12\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
\left(\begin{matrix}6&12\\2&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&12\\2&5\end{matrix}\right))\left(\begin{matrix}-6\\0\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-12\times 2}&-\frac{12}{6\times 5-12\times 2}\\-\frac{2}{6\times 5-12\times 2}&\frac{6}{6\times 5-12\times 2}\end{matrix}\right)\left(\begin{matrix}-6\\0\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}&-2\\-\frac{1}{3}&1\end{matrix}\right)\left(\begin{matrix}-6\\0\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6}\left(-6\right)\\-\frac{1}{3}\left(-6\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\2\end{matrix}\right)
গণনা কৰক৷
x=-5,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
6x+12y=-6,2x+5y=0
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 6x+2\times 12y=2\left(-6\right),6\times 2x+6\times 5y=0
6x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 6-ৰ দ্বাৰা পুৰণ কৰক৷
12x+24y=-12,12x+30y=0
সৰলীকৰণ৷
12x-12x+24y-30y=-12
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 12x+24y=-12-ৰ পৰা 12x+30y=0 হৰণ কৰক৷
24y-30y=-12
-12x লৈ 12x যোগ কৰক৷ চৰ্তাৱলী 12x আৰু -12x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-6y=-12
-30y লৈ 24y যোগ কৰক৷
y=2
-6-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+5\times 2=0
2x+5y=0-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+10=0
5 বাৰ 2 পুৰণ কৰক৷
2x=-10
সমীকৰণৰ দুয়োটা দিশৰ পৰা 10 বিয়োগ কৰক৷
x=-5
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-5,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷