x, y-ৰ বাবে সমাধান কৰক
x=1
y=2
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5x-7y=-9,-2x-y=-4
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-7y=-9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=7y-9
সমীকৰণৰ দুয়োটা দিশতে 7y যোগ কৰক৷
x=\frac{1}{5}\left(7y-9\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{7}{5}y-\frac{9}{5}
\frac{1}{5} বাৰ 7y-9 পুৰণ কৰক৷
-2\left(\frac{7}{5}y-\frac{9}{5}\right)-y=-4
অন্য সমীকৰণত x-ৰ বাবে \frac{7y-9}{5} স্থানাপন কৰক, -2x-y=-4৷
-\frac{14}{5}y+\frac{18}{5}-y=-4
-2 বাৰ \frac{7y-9}{5} পুৰণ কৰক৷
-\frac{19}{5}y+\frac{18}{5}=-4
-y লৈ -\frac{14y}{5} যোগ কৰক৷
-\frac{19}{5}y=-\frac{38}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{18}{5} বিয়োগ কৰক৷
y=2
-\frac{19}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{7}{5}\times 2-\frac{9}{5}
x=\frac{7}{5}y-\frac{9}{5}-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{14-9}{5}
\frac{7}{5} বাৰ 2 পুৰণ কৰক৷
x=1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি \frac{14}{5} লৈ -\frac{9}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=1,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-7y=-9,-2x-y=-4
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&-\frac{-7}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\\-\frac{-2}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&\frac{5}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&-\frac{7}{19}\\-\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-9\right)-\frac{7}{19}\left(-4\right)\\-\frac{2}{19}\left(-9\right)-\frac{5}{19}\left(-4\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
গণনা কৰক৷
x=1,y=2
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-7y=-9,-2x-y=-4
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-2\times 5x-2\left(-7\right)y=-2\left(-9\right),5\left(-2\right)x+5\left(-1\right)y=5\left(-4\right)
5x আৰু -2x সমান কৰিবৰ বাবে, -2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
-10x+14y=18,-10x-5y=-20
সৰলীকৰণ৷
-10x+10x+14y+5y=18+20
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -10x+14y=18-ৰ পৰা -10x-5y=-20 হৰণ কৰক৷
14y+5y=18+20
10x লৈ -10x যোগ কৰক৷ চৰ্তাৱলী -10x আৰু 10x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
19y=18+20
5y লৈ 14y যোগ কৰক৷
19y=38
20 লৈ 18 যোগ কৰক৷
y=2
19-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-2x-2=-4
-2x-y=-4-ত y-ৰ বাবে 2-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-2x=-2
সমীকৰণৰ দুয়োটা দিশতে 2 যোগ কৰক৷
x=1
-2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=2
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}