মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x-4y=-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
5y+1-x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
5y-x=-1
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
5x-4y=-2,-x+5y=-1
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x-4y=-2
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=4y-2
সমীকৰণৰ দুয়োটা দিশতে 4y যোগ কৰক৷
x=\frac{1}{5}\left(4y-2\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=\frac{4}{5}y-\frac{2}{5}
\frac{1}{5} বাৰ 4y-2 পুৰণ কৰক৷
-\left(\frac{4}{5}y-\frac{2}{5}\right)+5y=-1
অন্য সমীকৰণত x-ৰ বাবে \frac{4y-2}{5} স্থানাপন কৰক, -x+5y=-1৷
-\frac{4}{5}y+\frac{2}{5}+5y=-1
-1 বাৰ \frac{4y-2}{5} পুৰণ কৰক৷
\frac{21}{5}y+\frac{2}{5}=-1
5y লৈ -\frac{4y}{5} যোগ কৰক৷
\frac{21}{5}y=-\frac{7}{5}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{2}{5} বিয়োগ কৰক৷
y=-\frac{1}{3}
\frac{21}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=\frac{4}{5}\left(-\frac{1}{3}\right)-\frac{2}{5}
x=\frac{4}{5}y-\frac{2}{5}-ত y-ৰ বাবে -\frac{1}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{4}{15}-\frac{2}{5}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{4}{5} বাৰ -\frac{1}{3} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{2}{3}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{4}{15} লৈ -\frac{2}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-\frac{2}{3},y=-\frac{1}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x-4y=-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
5y+1-x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
5y-x=-1
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
5x-4y=-2,-x+5y=-1
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-1&5\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}&-\frac{-4}{5\times 5-\left(-4\left(-1\right)\right)}\\-\frac{-1}{5\times 5-\left(-4\left(-1\right)\right)}&\frac{5}{5\times 5-\left(-4\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}&\frac{4}{21}\\\frac{1}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{21}\left(-2\right)+\frac{4}{21}\left(-1\right)\\\frac{1}{21}\left(-2\right)+\frac{5}{21}\left(-1\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-\frac{1}{3}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{2}{3},y=-\frac{1}{3}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x-4y=-2
প্ৰথম সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা 4y বিয়োগ কৰক৷
5y+1-x=0
দ্বিতীয় সমীকৰণটো বিবেচনা কৰক৷ দুয়োটা দিশৰ পৰা x বিয়োগ কৰক৷
5y-x=-1
দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷ শূণ্যৰ পৰা যিকোনো বিয়োগ কৰিলে ঋণাত্মকেই দিয়ে৷
5x-4y=-2,-x+5y=-1
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
-5x-\left(-4y\right)=-\left(-2\right),5\left(-1\right)x+5\times 5y=5\left(-1\right)
5x আৰু -x সমান কৰিবৰ বাবে, -1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
-5x+4y=2,-5x+25y=-5
সৰলীকৰণ৷
-5x+5x+4y-25y=2+5
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি -5x+4y=2-ৰ পৰা -5x+25y=-5 হৰণ কৰক৷
4y-25y=2+5
5x লৈ -5x যোগ কৰক৷ চৰ্তাৱলী -5x আৰু 5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-21y=2+5
-25y লৈ 4y যোগ কৰক৷
-21y=7
5 লৈ 2 যোগ কৰক৷
y=-\frac{1}{3}
-21-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
-x+5\left(-\frac{1}{3}\right)=-1
-x+5y=-1-ত y-ৰ বাবে -\frac{1}{3}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
-x-\frac{5}{3}=-1
5 বাৰ -\frac{1}{3} পুৰণ কৰক৷
-x=\frac{2}{3}
সমীকৰণৰ দুয়োটা দিশতে \frac{5}{3} যোগ কৰক৷
x=-\frac{2}{3}
-1-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{2}{3},y=-\frac{1}{3}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷