মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+y=9,10x-7y=-18
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+y=9
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-y+9
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{5}\left(-y+9\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{5}y+\frac{9}{5}
\frac{1}{5} বাৰ -y+9 পুৰণ কৰক৷
10\left(-\frac{1}{5}y+\frac{9}{5}\right)-7y=-18
অন্য সমীকৰণত x-ৰ বাবে \frac{-y+9}{5} স্থানাপন কৰক, 10x-7y=-18৷
-2y+18-7y=-18
10 বাৰ \frac{-y+9}{5} পুৰণ কৰক৷
-9y+18=-18
-7y লৈ -2y যোগ কৰক৷
-9y=-36
সমীকৰণৰ দুয়োটা দিশৰ পৰা 18 বিয়োগ কৰক৷
y=4
-9-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{5}\times 4+\frac{9}{5}
x=-\frac{1}{5}y+\frac{9}{5}-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=\frac{-4+9}{5}
-\frac{1}{5} বাৰ 4 পুৰণ কৰক৷
x=1
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{4}{5} লৈ \frac{9}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=1,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+y=9,10x-7y=-18
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-18\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
\left(\begin{matrix}5&1\\10&-7\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\10&-7\end{matrix}\right))\left(\begin{matrix}9\\-18\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5\left(-7\right)-10}&-\frac{1}{5\left(-7\right)-10}\\-\frac{10}{5\left(-7\right)-10}&\frac{5}{5\left(-7\right)-10}\end{matrix}\right)\left(\begin{matrix}9\\-18\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{45}&\frac{1}{45}\\\frac{2}{9}&-\frac{1}{9}\end{matrix}\right)\left(\begin{matrix}9\\-18\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{45}\times 9+\frac{1}{45}\left(-18\right)\\\frac{2}{9}\times 9-\frac{1}{9}\left(-18\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
গণনা কৰক৷
x=1,y=4
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+y=9,10x-7y=-18
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
10\times 5x+10y=10\times 9,5\times 10x+5\left(-7\right)y=5\left(-18\right)
5x আৰু 10x সমান কৰিবৰ বাবে, 10-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
50x+10y=90,50x-35y=-90
সৰলীকৰণ৷
50x-50x+10y+35y=90+90
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 50x+10y=90-ৰ পৰা 50x-35y=-90 হৰণ কৰক৷
10y+35y=90+90
-50x লৈ 50x যোগ কৰক৷ চৰ্তাৱলী 50x আৰু -50x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
45y=90+90
35y লৈ 10y যোগ কৰক৷
45y=180
90 লৈ 90 যোগ কৰক৷
y=4
45-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
10x-7\times 4=-18
10x-7y=-18-ত y-ৰ বাবে 4-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
10x-28=-18
-7 বাৰ 4 পুৰণ কৰক৷
10x=10
সমীকৰণৰ দুয়োটা দিশতে 28 যোগ কৰক৷
x=1
10-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=1,y=4
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷