মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+y=-1,2x+5y=7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+y=-1
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-y-1
সমীকৰণৰ দুয়োটা দিশৰ পৰা y বিয়োগ কৰক৷
x=\frac{1}{5}\left(-y-1\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{5}y-\frac{1}{5}
\frac{1}{5} বাৰ -y-1 পুৰণ কৰক৷
2\left(-\frac{1}{5}y-\frac{1}{5}\right)+5y=7
অন্য সমীকৰণত x-ৰ বাবে \frac{-y-1}{5} স্থানাপন কৰক, 2x+5y=7৷
-\frac{2}{5}y-\frac{2}{5}+5y=7
2 বাৰ \frac{-y-1}{5} পুৰণ কৰক৷
\frac{23}{5}y-\frac{2}{5}=7
5y লৈ -\frac{2y}{5} যোগ কৰক৷
\frac{23}{5}y=\frac{37}{5}
সমীকৰণৰ দুয়োটা দিশতে \frac{2}{5} যোগ কৰক৷
y=\frac{37}{23}
\frac{23}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{1}{5}\times \frac{37}{23}-\frac{1}{5}
x=-\frac{1}{5}y-\frac{1}{5}-ত y-ৰ বাবে \frac{37}{23}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{37}{115}-\frac{1}{5}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{1}{5} বাৰ \frac{37}{23} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{12}{23}
এটা উমৈহতীয়া বিভাজক বিচাৰি আৰু অংশ গণক যোগ কৰি -\frac{37}{115} লৈ -\frac{1}{5} যোগ কৰক৷ ইয়াৰ পিছত যদি সম্ভৱ হয়, তেতিয়া একেবাৰে সৰ্বনিম্ন সময় সীমালৈ ভগ্নাংশক হ্ৰাস কৰক৷
x=-\frac{12}{23},y=\frac{37}{23}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+y=-1,2x+5y=7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&1\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}5&1\\2&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
\left(\begin{matrix}5&1\\2&5\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&5\end{matrix}\right))\left(\begin{matrix}-1\\7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-2}&-\frac{1}{5\times 5-2}\\-\frac{2}{5\times 5-2}&\frac{5}{5\times 5-2}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}&-\frac{1}{23}\\-\frac{2}{23}&\frac{5}{23}\end{matrix}\right)\left(\begin{matrix}-1\\7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{23}\left(-1\right)-\frac{1}{23}\times 7\\-\frac{2}{23}\left(-1\right)+\frac{5}{23}\times 7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{23}\\\frac{37}{23}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{12}{23},y=\frac{37}{23}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+y=-1,2x+5y=7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
2\times 5x+2y=2\left(-1\right),5\times 2x+5\times 5y=5\times 7
5x আৰু 2x সমান কৰিবৰ বাবে, 2-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
10x+2y=-2,10x+25y=35
সৰলীকৰণ৷
10x-10x+2y-25y=-2-35
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 10x+2y=-2-ৰ পৰা 10x+25y=35 হৰণ কৰক৷
2y-25y=-2-35
-10x লৈ 10x যোগ কৰক৷ চৰ্তাৱলী 10x আৰু -10x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-23y=-2-35
-25y লৈ 2y যোগ কৰক৷
-23y=-37
-35 লৈ -2 যোগ কৰক৷
y=\frac{37}{23}
-23-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
2x+5\times \frac{37}{23}=7
2x+5y=7-ত y-ৰ বাবে \frac{37}{23}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
2x+\frac{185}{23}=7
5 বাৰ \frac{37}{23} পুৰণ কৰক৷
2x=-\frac{24}{23}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{185}{23} বিয়োগ কৰক৷
x=-\frac{12}{23}
2-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{12}{23},y=\frac{37}{23}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷