মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

5x+3y=460,3x+4y=913
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+3y=460
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-3y+460
সমীকৰণৰ দুয়োটা দিশৰ পৰা 3y বিয়োগ কৰক৷
x=\frac{1}{5}\left(-3y+460\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{5}y+92
\frac{1}{5} বাৰ -3y+460 পুৰণ কৰক৷
3\left(-\frac{3}{5}y+92\right)+4y=913
অন্য সমীকৰণত x-ৰ বাবে -\frac{3y}{5}+92 স্থানাপন কৰক, 3x+4y=913৷
-\frac{9}{5}y+276+4y=913
3 বাৰ -\frac{3y}{5}+92 পুৰণ কৰক৷
\frac{11}{5}y+276=913
4y লৈ -\frac{9y}{5} যোগ কৰক৷
\frac{11}{5}y=637
সমীকৰণৰ দুয়োটা দিশৰ পৰা 276 বিয়োগ কৰক৷
y=\frac{3185}{11}
\frac{11}{5}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{5}\times \frac{3185}{11}+92
x=-\frac{3}{5}y+92-ত y-ৰ বাবে \frac{3185}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{1911}{11}+92
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{3}{5} বাৰ \frac{3185}{11} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{899}{11}
-\frac{1911}{11} লৈ 92 যোগ কৰক৷
x=-\frac{899}{11},y=\frac{3185}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+3y=460,3x+4y=913
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\913\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}5&3\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}460\\913\end{matrix}\right)
\left(\begin{matrix}5&3\\3&4\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}460\\913\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&4\end{matrix}\right))\left(\begin{matrix}460\\913\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-3\times 3}&-\frac{3}{5\times 4-3\times 3}\\-\frac{3}{5\times 4-3\times 3}&\frac{5}{5\times 4-3\times 3}\end{matrix}\right)\left(\begin{matrix}460\\913\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}&-\frac{3}{11}\\-\frac{3}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}460\\913\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{11}\times 460-\frac{3}{11}\times 913\\-\frac{3}{11}\times 460+\frac{5}{11}\times 913\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{899}{11}\\\frac{3185}{11}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{899}{11},y=\frac{3185}{11}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+3y=460,3x+4y=913
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
3\times 5x+3\times 3y=3\times 460,5\times 3x+5\times 4y=5\times 913
5x আৰু 3x সমান কৰিবৰ বাবে, 3-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
15x+9y=1380,15x+20y=4565
সৰলীকৰণ৷
15x-15x+9y-20y=1380-4565
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 15x+9y=1380-ৰ পৰা 15x+20y=4565 হৰণ কৰক৷
9y-20y=1380-4565
-15x লৈ 15x যোগ কৰক৷ চৰ্তাৱলী 15x আৰু -15x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-11y=1380-4565
-20y লৈ 9y যোগ কৰক৷
-11y=-3185
-4565 লৈ 1380 যোগ কৰক৷
y=\frac{3185}{11}
-11-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
3x+4\times \frac{3185}{11}=913
3x+4y=913-ত y-ৰ বাবে \frac{3185}{11}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
3x+\frac{12740}{11}=913
4 বাৰ \frac{3185}{11} পুৰণ কৰক৷
3x=-\frac{2697}{11}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{12740}{11} বিয়োগ কৰক৷
x=-\frac{899}{11}
3-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{899}{11},y=\frac{3185}{11}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷