x, y-ৰ বাবে সমাধান কৰক
x = -\frac{59}{13} = -4\frac{7}{13} \approx -4.538461538
y = \frac{1200}{13} = 92\frac{4}{13} \approx 92.307692308
গ্ৰাফ
ভাগ-বতৰা কৰক
ক্লিপবোৰ্ডলৈ প্ৰতিলিপি হৈছে
5x+0.3y=5,x+\frac{1}{8}y=7
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
5x+0.3y=5
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
5x=-0.3y+5
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{3y}{10} বিয়োগ কৰক৷
x=\frac{1}{5}\left(-0.3y+5\right)
5-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{3}{50}y+1
\frac{1}{5} বাৰ -\frac{3y}{10}+5 পুৰণ কৰক৷
-\frac{3}{50}y+1+\frac{1}{8}y=7
অন্য সমীকৰণত x-ৰ বাবে -\frac{3y}{50}+1 স্থানাপন কৰক, x+\frac{1}{8}y=7৷
\frac{13}{200}y+1=7
\frac{y}{8} লৈ -\frac{3y}{50} যোগ কৰক৷
\frac{13}{200}y=6
সমীকৰণৰ দুয়োটা দিশৰ পৰা 1 বিয়োগ কৰক৷
y=\frac{1200}{13}
\frac{13}{200}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x=-\frac{3}{50}\times \frac{1200}{13}+1
x=-\frac{3}{50}y+1-ত y-ৰ বাবে \frac{1200}{13}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{72}{13}+1
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{3}{50} বাৰ \frac{1200}{13} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{59}{13}
-\frac{72}{13} লৈ 1 যোগ কৰক৷
x=-\frac{59}{13},y=\frac{1200}{13}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
5x+0.3y=5,x+\frac{1}{8}y=7
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&0.3\\1&\frac{1}{8}\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{8}}{5\times \frac{1}{8}-0.3}&-\frac{0.3}{5\times \frac{1}{8}-0.3}\\-\frac{1}{5\times \frac{1}{8}-0.3}&\frac{5}{5\times \frac{1}{8}-0.3}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}&-\frac{12}{13}\\-\frac{40}{13}&\frac{200}{13}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{13}\times 5-\frac{12}{13}\times 7\\-\frac{40}{13}\times 5+\frac{200}{13}\times 7\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{59}{13}\\\frac{1200}{13}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{59}{13},y=\frac{1200}{13}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
5x+0.3y=5,x+\frac{1}{8}y=7
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
5x+0.3y=5,5x+5\times \frac{1}{8}y=5\times 7
5x আৰু x সমান কৰিবৰ বাবে, 1-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 5-ৰ দ্বাৰা পুৰণ কৰক৷
5x+0.3y=5,5x+\frac{5}{8}y=35
সৰলীকৰণ৷
5x-5x+0.3y-\frac{5}{8}y=5-35
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 5x+0.3y=5-ৰ পৰা 5x+\frac{5}{8}y=35 হৰণ কৰক৷
0.3y-\frac{5}{8}y=5-35
-5x লৈ 5x যোগ কৰক৷ চৰ্তাৱলী 5x আৰু -5x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
-\frac{13}{40}y=5-35
-\frac{5y}{8} লৈ \frac{3y}{10} যোগ কৰক৷
-\frac{13}{40}y=-30
-35 লৈ 5 যোগ কৰক৷
y=\frac{1200}{13}
-\frac{13}{40}-ৰ দ্বাৰা দুয়োটা দিশৰ সমীকৰণ হৰণ কৰক, যি ভগ্নাংশৰ ব্যতিক্ৰমৰ দ্বাৰা দুয়োটা দিশৰ গুণিতকৰ দৰে একে৷
x+\frac{1}{8}\times \frac{1200}{13}=7
x+\frac{1}{8}y=7-ত y-ৰ বাবে \frac{1200}{13}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x+\frac{150}{13}=7
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি \frac{1}{8} বাৰ \frac{1200}{13} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{59}{13}
সমীকৰণৰ দুয়োটা দিশৰ পৰা \frac{150}{13} বিয়োগ কৰক৷
x=-\frac{59}{13},y=\frac{1200}{13}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
উদাহৰণসমূহ
দ্বিঘাত সমীকৰণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্ৰিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
ৰৈখিক সমীকৰণ
y = 3x + 4
অঙ্ক
699 * 533
মেট্ৰিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকৰণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
পৃথকীকৰণ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইণ্টিগ্ৰেশ্বন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
সীমা
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}