মুখ্য সমললৈ এৰি যাওক
x, y-ৰ বাবে সমাধান কৰক
Tick mark Image
গ্ৰাফ

ৱেব অনুসন্ধানৰ পৰা একেধৰণৰ সমস্যাসমূহ

ভাগ-বতৰা কৰক

4x+5y=0,8x-15y=-5
চাবষ্টিটিউশ্বন ব্যৱহাৰ কৰি সমীকৰণৰ এটা যোৰা সমাধান কৰিবলৈ, চলকসমূহৰ এটাৰ বাবে সমীকৰণসমূহ প্ৰথমে সমাধান কৰক৷ ইয়াৰ পিছত অন্য সমীকৰণত এই চলকটোৰ বাবে ফলাফল স্থানাপন কৰক৷
4x+5y=0
সমীকৰণসমূহৰ এটা পচন্দ কৰক আৰু সমান চিনৰ বাওঁ দিশে x পৃথক কৰি xৰ বাবে ইয়াক সমাধান কৰক৷
4x=-5y
সমীকৰণৰ দুয়োটা দিশৰ পৰা 5y বিয়োগ কৰক৷
x=\frac{1}{4}\left(-5\right)y
4-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{5}{4}y
\frac{1}{4} বাৰ -5y পুৰণ কৰক৷
8\left(-\frac{5}{4}\right)y-15y=-5
অন্য সমীকৰণত x-ৰ বাবে -\frac{5y}{4} স্থানাপন কৰক, 8x-15y=-5৷
-10y-15y=-5
8 বাৰ -\frac{5y}{4} পুৰণ কৰক৷
-25y=-5
-15y লৈ -10y যোগ কৰক৷
y=\frac{1}{5}
-25-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{5}{4}\times \frac{1}{5}
x=-\frac{5}{4}y-ত y-ৰ বাবে \frac{1}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
x=-\frac{1}{4}
নিউমাৰেটৰ টাইমক নিউমাৰেটৰে আৰু ডেনোমিনেটৰ টাইমক ডেনোমিনেটেৰ পুৰণ কৰি -\frac{5}{4} বাৰ \frac{1}{5} পুৰণ কৰক৷ তাৰপাছত সম্ভৱ হ'লে ভগ্নাংশক নিম্নতম পদলৈ হ্ৰাস কৰক।
x=-\frac{1}{4},y=\frac{1}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷
4x+5y=0,8x-15y=-5
সমীকৰণসমূহক এটা মান্য ৰূপতৰাখক আৰু ইয়াৰ পিছত সমীকৰণসমূহৰ পদ্ধতি সমাধান কৰিবলৈ মেট্ৰিক্স ব্যৱহাৰ কৰক৷
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
মেট্ৰিক্স ৰূপত সমীকৰণ লিখক৷
inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)ৰ বিপৰীত মেট্ৰিক্সৰে বাওঁফালৰ সমীকৰণটো পূৰণ কৰক৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
কোনো মেট্ৰিক্সৰ গুণফল আৰু ইয়াৰ বিপৰীতটো হৈছে পৰিচয় মেট্ৰিক্স৷
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
সমান চিনৰ বাওঁফালে থকা মেট্ৰিক্সবোৰ পূৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4\left(-15\right)-5\times 8}&-\frac{5}{4\left(-15\right)-5\times 8}\\-\frac{8}{4\left(-15\right)-5\times 8}&\frac{4}{4\left(-15\right)-5\times 8}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
2\times 2 মেট্ৰিক্স \left(\begin{matrix}a&b\\c&d\end{matrix}\right)-ৰ বাবে, বিপৰীত মেট্ৰিক্স \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), সেয়েহে মেট্ৰিক্স সমীকৰণটো মেট্ৰিক্স পূৰণ সমস্যা হিচাপে পুনৰ লিখিব পাৰি।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{1}{20}\\\frac{2}{25}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
গণনা কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-5\right)\\-\frac{1}{25}\left(-5\right)\end{matrix}\right)
মেট্ৰিক্সসমূহ পুৰণ কৰক৷
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\\frac{1}{5}\end{matrix}\right)
গণনা কৰক৷
x=-\frac{1}{4},y=\frac{1}{5}
মেট্ৰিক্স উপাদান x আৰু y নিষ্কাষিত কৰক৷
4x+5y=0,8x-15y=-5
চলকসমূহৰ এটাৰ এলিমিনেশ্বন, ক'এফিচিয়েণ্টৰ দ্বাৰা সমাধান কৰিবলৈ দুয়োটা সমীকৰণতে একে থাকিব লাগিব, যাতে এটা সমীকৰণ অন্য এটাৰ পৰা বিয়োগ কৰিলে চলকটো সমান কৰিব পাৰি৷
8\times 4x+8\times 5y=0,4\times 8x+4\left(-15\right)y=4\left(-5\right)
4x আৰু 8x সমান কৰিবৰ বাবে, 8-ৰ দ্বাৰা প্ৰথম সমীকৰণৰ প্ৰতিটো দিশতে সকলো পদ পুৰণ কৰক আৰু দ্বিতীয়টোৰ প্ৰতিটো দিশৰ সকলো পদ 4-ৰ দ্বাৰা পুৰণ কৰক৷
32x+40y=0,32x-60y=-20
সৰলীকৰণ৷
32x-32x+40y+60y=20
সমান চিনৰ প্ৰতিটো দিশতে একে পদসমূহ বিয়োগ কৰি 32x+40y=0-ৰ পৰা 32x-60y=-20 হৰণ কৰক৷
40y+60y=20
-32x লৈ 32x যোগ কৰক৷ চৰ্তাৱলী 32x আৰু -32x সমান, সমাধান কৰিব পৰা কেৱল এটা চলকৰ সৈতে এটা সমীকৰণ এৰক৷
100y=20
60y লৈ 40y যোগ কৰক৷
y=\frac{1}{5}
100-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
8x-15\times \frac{1}{5}=-5
8x-15y=-5-ত y-ৰ বাবে \frac{1}{5}-ক স্থানাপন কৰক৷ কিয়নো ফলাফলৰ সমীকৰণত কেৱল এটা চলক আছে, আপুনি x-ৰ বাবে পোনপটীয়াকৈ সমাধান কৰিব পাৰে৷
8x-3=-5
-15 বাৰ \frac{1}{5} পুৰণ কৰক৷
8x=-2
সমীকৰণৰ দুয়োটা দিশতে 3 যোগ কৰক৷
x=-\frac{1}{4}
8-ৰ দ্বাৰা দুয়োটা ফাল ভাগ কৰক৷
x=-\frac{1}{4},y=\frac{1}{5}
ছিষ্টেমটো এতিয়া ঠিক হৈছে৷